1
|
Theron M, Blasselle A, Nedellec L, Ballet P, Dugrenot E, Gardette B, Guerrero F, Henckes A, Pennec JP. N 2 exchanges in hyperbaric environments: toward a model based on physiological gas transport (O 2 and CO 2). J Appl Physiol (1985) 2025; 138:342-357. [PMID: 39589899 DOI: 10.1152/japplphysiol.00357.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Decompression sickness can occur in divers even when recommended decompression procedures are followed. Furthermore, the physiological state of individuals can significantly affect bubbling variability. These informations highlight the need for personalized input to improve decompression in SCUBA diving. The main objective of this study is to propose a fundamental framework for a new approach to inert gas exchanges. A physiological model of oxygen delivery to organs and tissues has been built and adapted to nitrogen. The validation of the model was made by transferring the N2 to CO2. Under normobaric conditions (air breathing, oxygen breathing, and static apnea) and hyperbaric conditions, the O2 model replicates the reference physiological Po2 (Spearman correlation tests P < 0.001). The inert gas models can simulate inert gas partial pressures under normobaric and hyperbaric conditions. However, the lack of reference values prevents direct validation of this new model. Therefore, the N2 model has been transferred to CO2. The resulting CO2 model has been validated by comparing it with physiological reference values (Spearman correlation tests P < 0.01). The validity of the CO2 model constructed from the N2 model demonstrates the plausibility of this physiological model of inert gas exchanges. In the context of personalized decompression procedures, the proposed model is of significant interest as it enables the integration of physiological and morphological parameters (blood and respiratory flows, alveolo-capillary diffusion, respiratory and blood volumes, oxygen consumption rate, fat mass, etc.) into a model of nitrogen saturation/desaturation, in which oxygen and CO2 partial pressures can also be incorporated.NEW & NOTEWORTHY This is the first model of inert gas transport based on the physiology of respiratory gas. It was built for O2 delivery and validated against literature data; it was then transposed to N2 exchanges. The transposition procedure was checked by transposing the N2 model to CO2 (and validated against literature data). This model opens the possibility to integrate physiological and morphological inputs in a personalized decompression procedure in SCUBA diving.
Collapse
Affiliation(s)
| | | | - Lisa Nedellec
- ORPHY Laboratory, Université de Brest, Brest, France
| | - Pascal Ballet
- LaTIM (Laboratoire de Traitement de l'Information Médicale), UMR 1101, Université de Brest, Brest, France
| | - Emmanuel Dugrenot
- ORPHY Laboratory, Université de Brest, Brest, France
- Tek Diving SAS, Brest, France
- Divers Alert Network, Durham, North Carolina, United States
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, United States
| | | | | | | | | |
Collapse
|
2
|
Dugrenot E, Guernec A, Orsat J, Guerrero F. Gene expression of Decompression Sickness-resistant rats through a miRnome/transcriptome crossed approach. Commun Biol 2024; 7:1245. [PMID: 39358457 PMCID: PMC11446962 DOI: 10.1038/s42003-024-06963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Susceptibility to decompression sickness (DCS) is characterized by a wide inter-individual variability, the origins of which are still poorly understood. We selectively bred rats with at least a 3-fold greater resistance to DCS than standard rats after 6 generations. In order to better understand DCS mechanisms, we compared the static genome expression of these resistant rats from the 10th generation to their counterparts of the initial non-resistant Wistar strain, by a microarray transcriptomic approach coupled and crossed with a PCR plates miRnome study. Thus, we identified differentially expressed genes on selected males and females, as well as gender differences in those genes, and we crossed these transcripts with the respective targets of the differentially expressed microRNAs. Our results highlight pathways involved in inflammatory responses, circadian clock, cell signaling and motricity, phagocytosis or apoptosis, and they confirm the importance of inflammation in DCS pathophysiology.
Collapse
Affiliation(s)
- Emmanuel Dugrenot
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France.
- Tek Diving SAS, Brest, France.
- Divers Alert Network, Durham, NC, USA.
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA.
| | - Anthony Guernec
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - Jérémy Orsat
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - François Guerrero
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| |
Collapse
|
3
|
Daubresse L, Vallée N, Druelle A, Castagna O, Guieu R, Blatteau JE. Effects of CO₂ on the occurrence of decompression sickness: review of the literature. Diving Hyperb Med 2024; 54:110-119. [PMID: 38870953 PMCID: PMC11444918 DOI: 10.28920/dhm54.2.110-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/11/2024] [Indexed: 06/15/2024]
Abstract
Introduction Inhalation of high concentrations of carbon dioxide (CO₂) at atmospheric pressure can be toxic with dose-dependent effects on the cardiorespiratory system or the central nervous system. Exposure to both hyperbaric and hypobaric environments can result in decompression sickness (DCS). The effects of CO₂ on DCS are not well documented with conflicting results. The objective was to review the literature to clarify the effects of CO₂ inhalation on DCS in the context of hypobaric or hyperbaric exposure. Methods The systematic review included experimental animal and human studies in hyper- and hypobaric conditions evaluating the effects of CO₂ on bubble formation, denitrogenation or the occurrence of DCS. The search was based on MEDLINE and PubMed articles with no language or date restrictions and also included articles from the underwater and aviation medicine literature. Results Out of 43 articles, only 11 articles were retained and classified according to the criteria of hypo- or hyperbaric exposure, taking into account the duration of CO₂ inhalation in relation to exposure and distinguishing experimental work from studies conducted in humans. Conclusions Before or during a stay in hypobaric conditions, exposure to high concentrations of CO₂ favors bubble formation and the occurrence of DCS. In hyperbaric conditions, high CO₂ concentrations increase the occurrence of DCS when exposure occurs during the bottom phase at maximum pressure, whereas beneficial effects are observed when exposure occurs during decompression. These opposite effects depending on the timing of exposure could be related to 1) the physical properties of CO₂, a highly diffusible gas that can influence bubble formation, 2) vasomotor effects (vasodilation), and 3) anti-inflammatory effects (kinase-nuclear factor and heme oxygenase-1 pathways). The use of O₂-CO₂ breathing mixtures on the surface after diving may be an avenue worth exploring to prevent DCS.
Collapse
Affiliation(s)
- Lucile Daubresse
- Department of hyperbaric and diving medicine. Hôpital d'instruction des armées Sainte-Anne. Toulon armées, France
| | - Nicolas Vallée
- Resident operational underwater research team, Institut de recherche biomédicale des armées, Toulon armées, France
| | - Arnaud Druelle
- Department of hyperbaric and diving medicine. Hôpital d'instruction des armées Sainte-Anne. Toulon armées, France
| | - Olivier Castagna
- Resident operational underwater research team, Institut de recherche biomédicale des armées, Toulon armées, France
| | - Régis Guieu
- Center for cardiovascular and nutrition research, Aix-Marseille University, Marseille, France
| | - Jean-Eric Blatteau
- Department of hyperbaric and diving medicine. Hôpital d'instruction des armées Sainte-Anne. Toulon armées, France
- Corresponding author: Professor Jean-Eric Blatteau, Department of hyperbaric and diving medicine (SMHEP). Hôpital d'instruction des armées Sainte-Anne. 83800 Toulon armées, France,
| |
Collapse
|
4
|
Balestra C, Lévêque C, Mrakic-Sposta S, Vezzoli A, Wauthy P, Germonpré P, Tillmans F, Guerrero F, Lafère P. Physiology of deep closed circuit rebreather mixed gas diving: vascular gas emboli and biological changes during a week-long liveaboard safari. Front Physiol 2024; 15:1395846. [PMID: 38660539 PMCID: PMC11040087 DOI: 10.3389/fphys.2024.1395846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Diving decompression theory hypothesizes inflammatory processes as a source of micronuclei which could increase related risks. Therefore, we tested 10 healthy, male divers. They performed 6-8 dives with a maximum of two dives per day at depths ranging from 21 to 122 msw with CCR mixed gas diving. Methods: Post-dive VGE were counted by echocardiography. Saliva and urine samples were taken before and after each dive to evaluate inflammation: ROS production, lipid peroxidation (8-iso-PGF2), DNA damage (8-OH-dG), cytokines (TNF-α, IL-6, and neopterin). Results: VGE exhibits a progressive reduction followed by an increase (p < 0.0001) which parallels inflammation responses. Indeed, ROS, 8-iso-PGF2, IL-6 and neopterin increases from 0.19 ± 0.02 to 1.13 ± 0.09 μmol.min-1 (p < 0.001); 199.8 ± 55.9 to 632.7 ± 73.3 ng.mg-1 creatinine (p < 0.0001); 2.35 ± 0.54 to 19.5 ± 2.96 pg.mL-1 (p < 0.001); and 93.7 ± 11.2 to 299 ± 25.9 μmol·mol-1 creatinine (p = 0.005), respectively. The variation after each dive was held constant around 158.3% ± 6.9% (p = 0.021); 151.4% ± 5.7% (p < 0.0001); 176.3% ± 11.9% (p < 0.0001); and 160.1% ± 5.6% (p < 0.001), respectively. Discussion: When oxy-inflammation reaches a certain level, it exceeds hormetic coping mechanisms allowing second-generation micronuclei substantiated by an increase of VGE after an initial continuous decrease consistent with a depletion of "first generation" pre-existing micronuclei.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
| | - Clément Lévêque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Pierre Wauthy
- Department of Cardiac Surgery, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, Brussels, Belgium
| | | | | | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Laboratoire ORPHY EA 4324, University Brest, Brest, France
| |
Collapse
|
5
|
Imbert JP, Matity L, Massimelli JY, Bryson P. Review of saturation decompression procedures used in commercial diving. Diving Hyperb Med 2024; 54:23-38. [PMID: 38507907 PMCID: PMC11065503 DOI: 10.28920/dhm54.1.23-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/22/2024]
Abstract
Introduction This is a review of commercial heliox saturation decompression procedures. The scope does not include compression, storage depth or bell excursion dive procedures. The objectives are to: identify the sources of the procedures; trace their evolution; describe the current practice; and detect relevant trends. Methods Eleven international commercial diving companies provided their diving manuals for review under a confidentiality agreement. Results Modern commercial diving saturation procedures are derived from a small number of original procedures (United States Navy, Comex, and NORSOK). In the absence of relevant scientific studies since the late 80's, the companies have empirically adapted these procedures according to their needs and experience. Such adaptation has caused differences in decompression rates shallower than 60 msw, decompression rest stops and the decision to decompress linearly or stepwise. Nevertheless, the decompression procedures present a remarkable homogeneity in chamber PO2 and daily decompression rates when deeper than 60 msw. The companies have also developed common rules of good practice; no final decompression should start with an initial ascending excursion; a minimum hold is required before starting a final decompression after an excursion dive. Recommendation is made for the divers to exercise during decompression. Conclusions We observed a trend towards harmonisation within the companies that enforce international procedures, and, between companies through cooperation inside the committees of the industry associations.
Collapse
Affiliation(s)
- Jean-Pierre Imbert
- Divetech, 1543 chemin des vignasses, 06410 Biot, France
- Corresponding author: Jean Pierre Imbert, Divetech, 1543 ch des vignasses 0641Biot, France,
| | - Lyubisa Matity
- Hyperbaric and Tissue Viability Unit, Gozo General Hospital, Malta
| | | | - Philip Bryson
- International SOS, Forest Grove House, Foresterhill Road, Aberdeen, AB25 2ZP, UK
| |
Collapse
|
6
|
Šegrt Ribičić I, Valić M, Lušić Kalcina L, Božić J, Obad A, Glavaš D, Glavičić I, Valić Z. Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives. Sports (Basel) 2024; 12:35. [PMID: 38275984 PMCID: PMC10820603 DOI: 10.3390/sports12010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Introduction: This research was performed to examine the effects of air and oxygen prebreathing on bubble formation, flow-mediated dilatation, and psychomotor performance after scuba dives. Methods: Twelve scuba divers performed two dives using a gas mixture of oxygen, nitrogen, and helium (trimix). In a randomized protocol, they breathed air or oxygen 30 min before the trimix dives. Venous bubble formation, flow-mediated dilatation, and psychomotor performance were evaluated. The participants solved three psychomotor tests: determining the position of a light signal, coordination of complex psychomotor activity, and simple arithmetic operations. The total test solving time, minimum single-task solving time, and median solving time were analyzed. Results: The bubble grade was decreased in the oxygen prebreathing protocol in comparison to the air prebreathing protocol (1.5 vs. 2, p < 0.001). The total test solving times after the dives, in tests of complex psychomotor coordination and simple arithmetic operations, were shorter in the oxygen prebreathing protocol (25 (21-28) vs. 31 (26-35) and 87 (82-108) vs. 106 (90-122) s, p = 0.028). Conclusions: In the oxygen prebreathing protocol, the bubble grade was significantly reduced with no change in flow-mediated dilatation after the dives, indicating a beneficial role for endothelial function. The post-dive psychomotor speed was faster in the oxygen prebreathing protocol.
Collapse
Affiliation(s)
- Ivana Šegrt Ribičić
- Department of Pulmonary Diseases, University Hospital Center Split, 21000 Split, Croatia;
| | - Maja Valić
- Department of Neuroscience, University of Split School of Medicine, 21000 Split, Croatia;
| | - Linda Lušić Kalcina
- Department of Neuroscience, University of Split School of Medicine, 21000 Split, Croatia;
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Ante Obad
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Duška Glavaš
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia;
| | - Igor Glavičić
- Department of Marine Studies, University of Split, 21000 Split, Croatia;
| | - Zoran Valić
- Department of Physiology, University of Split School of Medicine, 21000 Split, Croatia;
| |
Collapse
|
7
|
Demir AE, Ata N. Hysteria as a Trigger for Epidemic Decompression Sickness Following Hypobaric Hypoxia Training. Aerosp Med Hum Perform 2022; 93:712-716. [DOI: 10.3357/amhp.6091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: Although hypobaric hypoxia training (HHT) is an essential component of aviation physiology training, it poses a risk of decompression sickness (DCS). DCS can sometimes be observed as a cluster of cases, which is referred to as epidemic DCS. In this report, we aim
to evaluate an epidemic DCS episode that occurred following two consecutive HHT sessions.METHODS: A total of 16 trainees, all of whom were medical doctors, attended the aviation medicine training course in the aeromedical research and training center. They went through HHT in two
sessions, each with eight trainees.RESULTS: Following two HHT sessions, five Type 1 DCS cases occurred among 18 personnel (16 trainees and 2 inside observers). DCS incidence rate was found to be 27.77%. They were successfully treated with hyperbaric oxygen therapy (HBOT).DISCUSSION:
Since the DCS incidence rate was found to be higher than the average in such a short period of time, this cluster of cases was labeled as epidemic DCS. We carried out a thorough investigation into all possible causes by following some templates that were developed to conduct comprehensive
investigations into epidemic DCS episodes. According to the psychological arguments discussed here, we placed a special emphasis on hysterical and psychosocial components, among other probable factors. In cases where the possibility of hysteria and placebo-nocebo responses exist, it is appropriate
to conduct the training and treatment processes with these factors in mind. No matter what the triggering factor is and how the symptoms manifest, HBOT remains crucial in the treatment of DCS.Demir AE, Ata N. Hysteria as a trigger for epidemic decompression sickness following hypobaric
hypoxia training. Aerosp Med Hum Perform. 2022; 93(10):712–716.
Collapse
|
8
|
Varying Oxygen Partial Pressure Elicits Blood-Borne Microparticles Expressing Different Cell-Specific Proteins-Toward a Targeted Use of Oxygen? Int J Mol Sci 2022; 23:ijms23147888. [PMID: 35887238 PMCID: PMC9322965 DOI: 10.3390/ijms23147888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions, but there are few comparative investigations assessing the effects over a large range of partial pressures. We investigated a metabolic response to single exposures to either normobaric (10%, 15%, 30%, 100%) or hyperbaric (1.4 ATA, 2.5 ATA) oxygen. Forty-eight healthy subjects (32 males/16 females; age: 43.7 ± 13.4 years, height: 172.7 ± 10.07 cm; weight 68.4 ± 15.7 kg) were randomly assigned, and blood samples were taken before and 2 h after each exposure. Microparticles (MPs) expressing proteins specific to different cells were analyzed, including platelets (CD41), neutrophils (CD66b), endothelial cells (CD146), and microglia (TMEM). Phalloidin binding and thrombospondin-1 (TSP), which are related to neutrophil and platelet activation, respectively, were also analyzed. The responses were found to be different and sometimes opposite. Significant elevations were identified for MPs expressing CD41, CD66b, TMEM, and phalloidin binding in all conditions but for 1.4 ATA, which elicited significant decreases. Few changes were found for CD146 and TSP. Regarding OPB, further investigation is needed to fully understand the future applications of such findings.
Collapse
|
9
|
Lambrechts K, Germonpré P, Vandenheede J, Delorme M, Lafère P, Balestra C. Mini Trampoline, a New and Promising Way of SCUBA Diving Preconditioning to Reduce Vascular Gas Emboli? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5410. [PMID: 35564805 PMCID: PMC9105492 DOI: 10.3390/ijerph19095410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022]
Abstract
Background: Despite evolution in decompression algorithms, decompression illness is still an issue nowadays. Reducing vascular gas emboli (VGE) production or preserving endothelial function by other means such as diving preconditioning is of great interest. Several methods have been tried, either mechanical, cardiovascular, desaturation aimed or biochemical, with encouraging results. In this study, we tested mini trampoline (MT) as a preconditioning strategy. Methods: In total, eight (five females, three males; mean age 36 ± 16 years; body mass index 27.5 ± 7.1 kg/m2) healthy, non-smoking, divers participated. Each diver performed two standardized air dives 1 week apart with and without preconditioning, which consisted of ±2 min of MT jumping. All dives were carried out in a pool (NEMO 33, Brussels, Belgium) at a depth of 25 m for 25 min. VGE counting 30 and 60 min post-dive was recorded by echocardiography together with an assessment of endothelial function by flow-mediated dilation (FMD). Results: VGE were significantly reduced after MT (control: 3.1 ± 4.9 VGE per heartbeat vs. MT: 0.6 ± 1.1 VGE per heartbeat, p = 0.031). Post-dive FMD exhibited a significant decrease in the absence of preconditioning (92.9% ± 7.4 of pre-dive values, p = 0.03), as already described. MT preconditioning prevented this FMD decrease (103.3% ± 7.1 of pre-dive values, p = 0.30). FMD difference is significant (p = 0.03). Conclusions: In our experience, MT seems to be a very good preconditioning method to reduce VGE and endothelial changes. It may become the easiest, cheapest and more efficient preconditioning for SCUBA diving.
Collapse
Affiliation(s)
- Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Joaquim Vandenheede
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Manon Delorme
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Laboratoire ORPHY, EA4324, Université de Bretagne Occidentale (UBO), 29238 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (K.L.); (P.G.); (J.V.); (M.D.); (P.L.)
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
10
|
Effect of SCUBA Diving on Ophthalmic Parameters. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030408. [PMID: 35334584 PMCID: PMC8949343 DOI: 10.3390/medicina58030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objective: Several cases of central serous chorioretinopathy (CSC) in divers have been reported in our medical retina center over the past few years. This study was designed to evaluate possible changes induced by SCUBA diving in ophthalmic parameters and especially subfoveal choroidal thickness (SFCT), since the choroid seems to play a crucial role in physiopathology of CSC. Materials and Methods: Intraocular pressure (IOP), SFCT, pachymetry, flow-mediated dilation (FMD), blood pressure, and heart rate were measured in 15 healthy volunteer divers before diving, 30 and 60 min after a standard deep dive of 25 m depth for 25 min in a dedicated diving pool (NEMO 33). Results: SFCT reduces significantly to 96.63 ± 13.89% of pre-dive values (p = 0.016) 30 min after diving. It recovers after 60 min reaching control values. IOP decreases to 88.05 ± 10.04% of pre-dive value at 30 min, then increases to 91.42 ± 10.35% of its pre-dive value (both p < 0.0001). Pachymetry shows a slight variation, but is significantly increased to 101.63 ± 1.01% (p = 0.0159) of the pre-dive value, and returns to control level after 60 min. FMD pre-dive was 107 ± 6.7% (p < 0.0001), but post-dive showed a diminished increase to 103 ± 6.5% (p = 0.0132). The pre-post difference was significant (p = 0.03). Conclusion: Endothelial dysfunction leading to arterial stiffness after diving may explain the reduced SFCT observed, but SCUBA diving seems to have miscellaneous consequences on eye parameters. Despite this clear influence on SFCT, no clear relationship between CSC and SCUBA diving can be drawn.
Collapse
|
11
|
Balestra C, Guerrero F, Theunissen S, Germonpré P, Lafère P. Physiology of repeated mixed gas 100-m wreck dives using a closed-circuit rebreather: a field bubble study. Eur J Appl Physiol 2021; 122:515-522. [PMID: 34839432 PMCID: PMC8627581 DOI: 10.1007/s00421-021-04856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/19/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Data regarding decompression stress after deep closed-circuit rebreather (CCR) dives are scarce. This study aimed to monitor technical divers during a wreck diving expedition and provide an insight in venous gas emboli (VGE) dynamics. METHODS Diving practices of ten technical divers were observed. They performed a series of three consecutive daily dives around 100 m. VGE counts were measured 30 and 60 min after surfacing by both cardiac echography and subclavian Doppler graded according to categorical scores (Eftedal-Brubakk and Spencer scale, respectively) that were converted to simplified bubble grading system (BGS) for the purpose of analysis. Total body weight and fluids shift using bioimpedancemetry were also collected pre- and post-dive. RESULTS Depth-time profiles of the 30 recorded man-dives were 97.3 ± 26.4 msw [range: 54-136] with a runtime of 160 ± 65 min [range: 59-270]. No clinical decompression sickness (DCS) was detected. The echographic frame-based bubble count par cardiac cycle was 14 ± 13 at 30 min and 13 ± 13 at 60 min. There is no statistical difference neither between dives, nor between time of measurements (P = 0.07). However, regardless of the level of conservatism used, a high incidence of high-grade VGE was detected. Doppler recordings with the O'dive were highly correlated with echographic recordings (Spearman r of 0.81, P = 0.008). CONCLUSION Although preliminary, the present observation related to real CCR deep dives questions the precedence of decompression algorithm over individual risk factors and pleads for an individual approach of decompression.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France
| | - Sigrid Theunissen
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium.,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium.,DAN Europe Research Department, Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Avenue Schaller, 91, 1160, Brussels, Belgium. .,Centre for Hyperbaric Oxygen Therapy, Military Hospital Queen Astrid, Brussels, Belgium. .,Laboratoire ORPHY, EA 4324, Université de Bretagne Occidentale, Brest, France. .,DAN Europe Research Department, Brussels, Belgium.
| |
Collapse
|
12
|
Tso JV, Powers JM, Kim JH. Cardiovascular considerations for scuba divers. Heart 2021; 108:1084-1089. [PMID: 34670825 DOI: 10.1136/heartjnl-2021-319601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
As the popularity of scuba diving increases internationally, physicians interacting with divers in the clinical setting must be familiar with the cardiovascular stresses and risks inherent to this activity. Scuba presents a formidable cardiovascular challenge by combining unique environmental conditions with the physiologic demands of underwater exercise. Haemodynamic stresses encountered at depth include increased hydrostatic pressure leading to central shifts in plasma volume coupled with cold water stimuli leading to simultaneous parasympathetic and sympathetic autonomic responses. Among older divers and those with underlying cardiovascular risk factors, these physiologic changes increase acute cardiac risks while diving. Additional scuba risks, as a consequence of physical gas laws, include arterial gas emboli and decompression sickness. These pathologies are particularly dangerous with altered sensorium in hostile dive conditions. When present, the appropriate management of patent foramen ovale (PFO) is uncertain, but closure of PFO may reduce the risk of paradoxical gas embolism in divers with a prior history of decompression sickness. Finally, similar to other Masters-level athletes, divers with underlying traditional cardiovascular risk should undergo complete cardiac risk stratification to determine 'fitness-to-dive'. The presence of undertreated coronary artery disease, occult cardiomyopathy, channelopathy and arrhythmias must all be investigated and appropriately treated in order to ensure diver safety. A patient-centred approach facilitating shared decision-making between divers and experienced practitioners should be utilised in the management of prospective scuba divers.
Collapse
Affiliation(s)
- Jason V Tso
- Department of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M Powers
- Department of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jonathan H Kim
- Department of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Effect of Water Amount Intake before Scuba Diving on the Risk of Decompression Sickness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147601. [PMID: 34300051 PMCID: PMC8306992 DOI: 10.3390/ijerph18147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
Background and objective: The aim of this study was to investigate the influence of pre-hydration levels on circulating bubble formation for scuba divers and to evaluate the appropriate volume of water intake for reducing the risk of decompression sickness (DCS). Materials and Methods: Twenty scuba divers were classified into four groups according to the volume of water taken in before scuba diving as follows: no-water-intake group (NWIG), 30%-water-intake group (30WIG), 50%-water intake group (50WIG), and 100%-water-intake group (100WIG). We measured the circulating bubbles using movement status by Doppler on the right and left subclavian veins and precordial regions at pre-dive, post-dive, and 30 min after diving to a depth of 30 m for a duration of 25 min at the bottom. Results: Participants belonging to the 30WIG showed the lowest frequency, percentage, and amplitude of bubbles and consequently the lowest bubble grade in the left and right subclavian veins and precordial region at post-time and 30 min after diving. Conclusions: It can be inferred that pre-hydration with 30% of the recommended daily water intake before scuba diving effectively suppressed the formation of bubbles after diving and decreased the risk of DCS.
Collapse
|
14
|
Mayer D, Guerrero F, Goanvec C, Hetzel L, Linders J, Ljubkovic M, Kreczy A, Mayer C, Kirsch M, Ferenz KB. Prevention of Decompression Sickness by Novel Artificial Oxygen Carriers. Med Sci Sports Exerc 2021; 52:2127-2135. [PMID: 32251255 DOI: 10.1249/mss.0000000000002354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For three decades, studies have demonstrated the therapeutic efficacy of perfluorocarbon (PFC) in reducing the onset of decompression trauma. However, none of these emulsion-based preparations are accepted for therapeutic use in the western world, mainly because of severe side effects and a long organ retention time. A new development to guarantee a stable dispersion without these disadvantages is the encapsulation of PFC in nanocapsules with an albumin shell. PURPOSE Newly designed albumin-derived perfluorocarbon-based artificial oxygen carriers (A-AOC) are used in a rodent in vivo model as a preventive therapy for decompression sickness (DCS). METHODS Thirty-seven rats were treated with A-AOC (n = 12), albumin nanocapsules filled with neutral oil (A-O-N, n = 12), or 5% human serum albumin solution (A-0-0, n = 13) before a simulated dive. Eleven rats, injected with A-AOC, stayed at normal pressure (A-AOC surface). Clinical, laboratory, and histological evaluations were performed. RESULTS The occurrence of DCS depended on the treatment group. A-AOC significantly reduced DCS appearance and mortality. Furthermore, a significant improvement of survival time was found (A-AOC compared with A-0-0). Histological assessment of A-AOC-dive compared with A-0-0-dive animals revealed significantly higher accumulation of macrophages, but less blood congestion in the spleen and significantly less hepatic circulatory disturbance, vacuolization, and cell damage. Compared with nondiving controls, lactate and myoglobin showed a significant increase in the A-0-0- but not in the A-AOC-dive group. CONCLUSION Intravenous application of A-AOC was well tolerated and effective in reducing the occurrence of DCS, and animals showed significantly higher survival rates and less symptoms compared with the albumin group (A-0-0). Analysis of histological results and fast reacting plasma parameters confirmed the preventive properties of A-AOC.
Collapse
Affiliation(s)
| | | | | | - Lisa Hetzel
- Institute of Physical Chemistry, University Duisburg-Essen, CENIDE, Essen, GERMANY
| | - Jürgen Linders
- Institute of Physical Chemistry, University Duisburg-Essen, CENIDE, Essen, GERMANY
| | - Marko Ljubkovic
- Department of Integrative Physiology, Medical School University of Split, Split, CROATIA
| | - Alfons Kreczy
- Department of Pathology, REGIOMED Klinikum Coburg, Coburg, GERMANY
| | - Christian Mayer
- Institute of Physical Chemistry, University Duisburg-Essen, CENIDE, Essen, GERMANY
| | - Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Essen, GERMANY
| | - Katja Bettina Ferenz
- Institute of Physiology, University Hospital Essen, University Duisburg-Essen, CENIDE, Essen, GERMANY
| |
Collapse
|
15
|
Barak OF, Janjic N, Drvis I, Mijacika T, Mudnic I, Coombs GB, Thom SR, Madic D, Dujic Z. Vascular dysfunction following breath-hold diving. Can J Physiol Pharmacol 2020; 98:124-130. [PMID: 31505129 DOI: 10.1139/cjpp-2019-0341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41- and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.
Collapse
Affiliation(s)
- Otto F Barak
- Faculty of Medicine, University of Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Serbia
| | | | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Croatia
| | | | | | - Geoff B Coombs
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dejan Madic
- Faculty of Sports and Physical Education, University of Novi Sad, Serbia
| | | |
Collapse
|
16
|
Abstract
Introduction: Internationally it is estimated that six million people participate in self-contained underwater breathing apparatus (SCUBA) diving each year. Registries suggest a significant proportion of divers have a current or historical diagnosis of asthma. Previously individuals with asthma were prohibited from diving, however, several contemporary guidelines suggest a select population of patients with asthma may be able to dive with an acceptable degree of risk. Areas covered: Divers with asthma may be at an increased risk of a variety of diving-related medical injuries including; pulmonary barotrauma (PBT), pneumothorax, pneumomediastinum, arterial gas embolism (AGE), reduction in pulmonary function, bronchospasm and decompression sickness (DCS). This article will discuss the latest evidence on the incidence of adverse events in diving with a focus on those caused by asthma. Expert opinion: Physicians can be faced with the difficult task of counseling patients with asthma who wish to dive. This review article will aim to explore the current guidelines which can assist a physician in providing a comprehensive dive safety assessment.
Collapse
Affiliation(s)
| | - Giles Dixon
- University of Bristol Medical School , Bristol , UK.,Great Western Hospital NHS Foundation Trust , Swindon , UK
| | | |
Collapse
|
17
|
Balestra C, Germonpré P, Rocco M, Biancofiore G, Kot J. Diving physiopathology: the end of certainties? Food for thought. Minerva Anestesiol 2019; 85:1129-1137. [PMID: 31238641 DOI: 10.23736/s0375-9393.19.13618-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our understanding of decompression physiopathology has slowly improved during this last decade and some uncertainties have disappeared. A better understanding of anatomy and functional aspects of patent foramen ovale (PFO) have slowly resulted in a more liberal approach toward the medical fitness to dive for those bearing a PFO. Circulating vascular gas emboli (VGE) are considered the key actors in development of decompression sickness and can be considered as markers of decompression stress indicating induction of pathophysiological processes not necessarily leading to occurrence of disease symptoms. During the last decade, it has appeared possible to influence post-dive VGE by a so-called "preconditioning" as a pre-dive denitrogenation, exercise or some pharmacological agents. In the text we have deeply examined all the scientific evidence about this complicated but challenging theme. Finally, the role of the "normobaric oxygen paradox" has been clarified and it is not surprising that it could be involved in neuroprotection and cardioprotection. However, the best level of inspired oxygen and the exact time frame to achieve optimal effect is still not known. The aim of this paper was to reflect upon the most actual uncertainties and distil out of them a coherent, balanced advice towards the researchers involved in gas-bubbles-related pathologies.
Collapse
Affiliation(s)
- Costantino Balestra
- Laboratory of Environmental and Occupational (Integrative) Physiology, Haute Ecole Bruxelles-Brabant, Auderghem, Brussels, Belgium.,Division of Research, Divers Alert Network Europe, Gharghur, Malta
| | - Peter Germonpré
- Laboratory of Environmental and Occupational (Integrative) Physiology, Haute Ecole Bruxelles-Brabant, Auderghem, Brussels, Belgium.,Division of Research, Divers Alert Network Europe, Gharghur, Malta.,Center for Hyperbaric Oxygen Therapy, Military Hospital of Brussels, Brussels, Belgium
| | - Monica Rocco
- Unit of Intensive Care, Department of Surgical and Medical Science and Translational Medicine, Sapienza University, Rome, Italy -
| | | | - Jacek Kot
- National Center of Hyperbaric Medicine in Gdynia, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|