1
|
Hira R, Baker JR, Siddiqui T, Patel A, Valani FGA, Lloyd MG, Floras JS, Morillo CA, Sheldon RS, Raj SR. Attenuated cardiac autonomic function in patients with long-COVID with impaired orthostatic hemodynamics. Clin Auton Res 2025; 35:301-314. [PMID: 39841332 DOI: 10.1007/s10286-025-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
PURPOSE Long-coronavirus disease (long-COVID) is associated with initial orthostatic hypotension and postural orthostatic tachycardia syndrome. Whether altered autonomic tone underlies these abnormalities is unknown. We compared autonomic function between patients with long-COVID and healthy controls, and within patients with long-COVID with different orthostatic hemodynamic phenotypes. METHODS Patients with long-COVID (n = 94; F = 76; 42 years [36, 53 years] with initial orthostatic hypotension: n = 40; F = 32; 49 years [39, 57 years]; postural orthostatic tachycardia syndrome: n = 29; F = 26; 39 years [33, 47 years]; or no abnormalities: n = 25; F = 18; 42 years [35, 49 years]), and healthy controls (n = 33; F = 25; 49 years [30, 62 years]) completed a 10-min active stand with beat-to-beat hemodynamics. Heart rate variability, blood pressure variability, and baroreflex sensitivity were calculated as indirect measures of cardiovascular autonomic health. Continuous data (median [95% confidence interval]) were analyzed with Mann-Whitney U tests or Kruskal-Wallis tests with Dunn's corrections. RESULTS Patients with long-COVID had lower upright high frequency heart rate variability (p = 0.04) and low frequency blood pressure variability (p = 0.001) than controls. Patients with initial orthostatic hypotension had lower supine baroreflex sensitivity compared with patients without abnormalities (p = 0.01), and lower supine baroreflex sensitivity (p = 0.001) and high frequency heart rate variability (p = 0.03) than patients with postural orthostatic tachycardia syndrome. Patients with postural orthostatic tachycardia syndrome had lower upright high frequency heart rate variability (p < 0.001) and baroreflex sensitivity (p < 0.001) compared with patients without abnormalities and lower upright low frequency blood pressure variability (p = 0.04) compared with controls. CONCLUSIONS Patients with long-COVID have attenuated cardiac autonomic function. Patients with initial orthostatic hypotension have lower supine baroreflex sensitivity. Patients with postural orthostatic tachycardia syndrome have lower upright vascular sympathetic and cardiac parasympathetic modulation. Long-COVID subgroups do not present with homogeneous pathophysiology, necessitating targeted treatment strategies.
Collapse
Affiliation(s)
- Rashmin Hira
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Jacquie R Baker
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Tanya Siddiqui
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Aishani Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Felix Gabriel Ayala Valani
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Matthew G Lloyd
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - John S Floras
- Department of Medicine, University Health Network and Sinai Health, University of Toronto, Toronto, ON, Canada
| | - Carlos A Morillo
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Robert S Sheldon
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
| | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, GAC70 HRIC Building, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
2
|
Tam PK, Ramamurthy G, Rawat L, Huang S, Lim JH. Prevalence and Outcomes of Orthostatic Hypotension in Hemorrhagic Stroke Patients During Hospitalization. Neurol Int 2024; 16:1878-1886. [PMID: 39728760 DOI: 10.3390/neurolint16060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Orthostatic hypotension (OH) is highly prevalent in hospitalized patients and can lead to major consequences. The prevalence of OH among patients with stroke has also been reported to be high in in-patient cohorts. However, no previous analysis has focused exclusively on patients with hemorrhagic stroke, a group that may have a different disease profile, including a greater need for blood pressure control and surgical intervention. This study aims to examine the prevalence of OH, its risk factors, and potential impact in patients who were hospitalized due to hemorrhagic stroke. METHODS A retrospective analysis of in-patient records between 1 January 2021 and 30 April 2023 was conducted for patients with stroke due to intracerebral hemorrhage (ICH) or subarachnoid hemorrhage (SAH) who were referred to rehabilitation at a tertiary hospital in Singapore. OH was defined as a drop in systolic blood pressure of ≥20 mmHg or diastolic blood pressure of ≥10 mmHg during the sit-up test as part of the rehabilitation assessment. Additional data collected included demographic information, length of stay, antihypertensive medications used at the time of assessment, comorbidities, and discharge functional outcomes as measured by a modified Rankin Scale. RESULTS A total of 77 patients (65 [84.4%] with ICH and 12 [15.6%] with SAH) were included in the analysis. The prevalence of OH was 37.7%. A history of surgical intervention was identified as the major risk factor for the development of OH (odds ratio 4.28, 95% confidence interval 1.37 to 13.35, p = 0.009). There was no difference in hospital length of stay or discharge modified Rankin Scale scores between the two groups. CONCLUSIONS OH was frequently observed among patients with hemorrhagic stroke during the acute/subacute stage and should be monitored, especially in patients who require surgical intervention.
Collapse
Affiliation(s)
- Pui Kit Tam
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Guhan Ramamurthy
- BG Institute of Neurosciences, BG Hospital, Tiruchendur, Tuticorin 628216, Tamil Nadu, India
| | - Lavanya Rawat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Serene Huang
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Jeong Hoon Lim
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
3
|
Louwies T, De Boever P, Hasso R, Tremblay MF, Xu D, Blaber AP, Goswami N. Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail. NPJ Microgravity 2024; 10:105. [PMID: 39548129 PMCID: PMC11568155 DOI: 10.1038/s41526-024-00443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Long-term human spaceflight can lead to cardiovascular deconditioning, but little is known about how weightlessness affects microcirculation. In this study, we examined how the retinal microvessels and cerebrovascular regulation of 19 healthy male participants responded to long-term head-down bedrest (HDBR), an earth-based analog for weightlessness. In addition, we examined whether an anti-inflammatory/antioxidant cocktail could prevent the vascular changes caused by HDBR. In all study participants, we found a decrease in retinal arteriolar diameter by HDBR day 8 and an increase in retinal venular diameter by HDBR day 16. Concurrently, blood pressure at the level of the middle cerebral artery and the cerebrovascular resistance index were higher during HDBR, while cerebral blood flow velocity was lower. None of these changes were reversed in participants receiving the anti-inflammatory/antioxidant cocktail, indicating that this cocktail was insufficient to restore the microvascular and cerebral blood flow changes induced by HDBR.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Patrick De Boever
- Center of Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Robin Hasso
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Malcom F Tremblay
- Aerospace Physiology Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Da Xu
- Aerospace Physiology Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew P Blaber
- Aerospace Physiology Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
- Department of Health Sciences, Alma Mater Europaea, Maribor, Slovenia.
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
4
|
Caddy HT, Fujino M, Vahabli E, Voigt V, Kelsey LJ, Dilley RJ, Carvalho LS, Takahashi S, Green DJ, Doyle BJ. Simulation of murine retinal hemodynamics in response to tail suspension. Comput Biol Med 2024; 182:109148. [PMID: 39298883 DOI: 10.1016/j.compbiomed.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (<10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P < 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (<10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (<20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Livia S Carvalho
- Retinal Genomics and Therapy Group, Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia.
| |
Collapse
|
5
|
Hoenemann JN, Moestl S, de Boni L, Hoffmann F, Arz M, Berger L, Pesta D, Heusser K, Mulder E, Lee SMC, Macias BR, Tank J, Jordan J. Cardiopulmonary deconditioning and plasma volume loss are not sufficient to provoke orthostatic hypertension. Hypertens Res 2024; 47:2211-2216. [PMID: 38783144 PMCID: PMC11298404 DOI: 10.1038/s41440-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Orthostatic hypertension, defined by an increase of systolic blood pressure (SBP) of ≥20 mmHg upon standing, harbors an increased cardiovascular risk. We pooled data from two rigorously conducted head-down tilt bedrest studies to test the hypothesis that cardiopulmonary deconditioning and hypovolemia predispose to orthostatic hypertension. With bedrest, peak VO2 decreased by 6 ± 4 mlO2/min/kg (p < 0.0001) and plasma volume by 367 ± 348 ml (p < 0.0001). Supine SBP increased from 127 ± 9 mmHg before to 133 ± 10 mmHg after bedrest (p < 0.0001). In participants with stable hemodynamics following head-up tilt, the incidence of orthostatic hypertension was 2 out of 67 participants before bedrest and 2 out of 57 after bedrest. We conclude that in most healthy persons, cardiovascular deconditioning and volume loss associated with long-term bedrest are not sufficient to cause orthostatic hypertension.
Collapse
Affiliation(s)
- J-N Hoenemann
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Kerpener Str. 62, 50937, Cologne, Germany
| | - S Moestl
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - L de Boni
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - F Hoffmann
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Kerpener Str. 62, 50937, Cologne, Germany
| | - M Arz
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - L Berger
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - D Pesta
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - K Heusser
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - E Mulder
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | | | - B R Macias
- NASA Johnson Space Center, Houston, TX, USA
| | - J Tank
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - J Jordan
- German Aerospace Center-DLR, Institute of Aerospace Medicine, Cologne, Germany.
- Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Tölgyesi B, Altbäcker A, Barkaszi I, Stuckenschneider T, Braunsmann L, Takács E, Ehmann B, Balázs L, Abeln V. Effect of artificial gravity on neurocognitive performance during head-down tilt bedrest. NPJ Microgravity 2024; 10:59. [PMID: 38839787 PMCID: PMC11153507 DOI: 10.1038/s41526-024-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
This study evaluated the acute and chronic effects of intermittent and continuous Artificial Gravity (AG) on cognitive performance during 60 days of Head-down tilt bedrest (HDTBR), a well-established ground-based spaceflight analogue method. Participants were randomly assigned to three groups: intermittent AG, continuous AG, and HDTBR control group without AG exposure. Task performance and electrophysiological measures of attention and working memory were investigated during Simple and Complex tasks in the Visual and the Auditory modality. Compared to baseline, faster reaction time and better accuracy was present during HDTBR regarding the Complex tasks, however, the practice effect was diminished in the three HDTBR groups compared to an ambulatory control group. Brain potentials showed a modality-specific decrease, as P3a was decreased only in the Auditory, while P3b decreased in the Visual modality. No evidence for acute or chronic AG-related cognitive impairments during HDTBR was found.
Collapse
Affiliation(s)
- Borbála Tölgyesi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Interaction and Immersion Hub, Innovation Center, Moholy-Nagy University of Art and Design, Budapest, Hungary
| | - Anna Altbäcker
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Irén Barkaszi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tim Stuckenschneider
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
- Geriatric Medicine, Department for Health, Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Leonard Braunsmann
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
| | - Endre Takács
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Bea Ehmann
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - László Balázs
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Vera Abeln
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
| |
Collapse
|
7
|
Rinaldi L, Rigo S, Pani M, Bisoglio A, Khalaf K, Minonzio M, Shiffer D, Romeo MA, Verzeletti P, Ciccarelli M, Bordoni MG, Stranges S, Riboli E, Furlan R, Barbic F. Long-COVID autonomic syndrome in working age and work ability impairment. Sci Rep 2024; 14:11835. [PMID: 38782998 PMCID: PMC11116376 DOI: 10.1038/s41598-024-61455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Long-COVID19 has been recently associated with long-sick leave and unemployment. The autonomic nervous system functioning may be also affected by SARS-CoV-2, leading to a chronic autonomic syndrome. This latter remains widely unrecognized in clinical practice. In the present study, we assessed the occurrence of Long-COVID19 Autonomic Syndrome in a group of active workers as well as the relationships between their autonomic dysfunction and work ability. This prospective observational study was conducted during the 2nd wave of the pandemic in Italy. Forty-five patients (53.6 ± 8.4 years; 32 M) hospitalized for COVID19, were consecutively enrolled at the time of their hospital discharge (T0) and followed-up for 6 months. Autonomic symptoms and work ability were assessed by COMPASS31 and Work Ability Index questionnaires at T0, one (T1), three and six (T6) months after hospital discharge and compared to those retrospectively collected for a period preceding SARS-CoV-2 infection. Clinical examination and standing test were also performed at T1 and T6. One in three working-age people developed a new autonomic syndrome that was still evident 6 months after the acute infection resolution. This was associated with a significant reduction in the work ability. Recognition of Long-COVID19 Autonomic Syndrome may promote early intervention to facilitate return to work and prevent unemployment.
Collapse
Affiliation(s)
- Luca Rinaldi
- Occupational Medicine, IRCCS Salvatore Maugeri, University of Pavia, Pavia, Italy
| | - Stefano Rigo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Margherita Pani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Bisoglio
- Department of Neurosurgery, University Vita e Salute S. Raffaele, Milan, Italy
| | - Kareem Khalaf
- Department of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Maura Minonzio
- IRCCS Humanitas Research Hospital, Internal Medicine, 20089, Rozzano, Italy
| | - Dana Shiffer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Internal Medicine, 20089, Rozzano, Italy
| | - Maria Angela Romeo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Michele Ciccarelli
- IRCCS Humanitas Research Hospital, Internal Medicine, 20089, Rozzano, Italy
| | | | - Saverio Stranges
- Departments of Epidemiology and Biostatistics, Family Medicine and Medicine, Western University, London, ON, Canada
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Elio Riboli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- School of Public Health, Imperial College London, London, UK
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Internal Medicine, 20089, Rozzano, Italy
| | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- IRCCS Humanitas Research Hospital, Internal Medicine, 20089, Rozzano, Italy.
- Departments of Epidemiology and Biostatistics, Family Medicine and Medicine, Western University, London, ON, Canada.
| |
Collapse
|
8
|
Srinivas V, Choubey U, Kapparath S, Shaik T, Singh B, Mahmood R, Garg N, Aggarwal P, Jain R. Age-Related Orthostatic Hypotension: A Comprehensive Analysis of Prevalence, Mechanisms, and Management in the Geriatric Population. Cardiol Rev 2024:00045415-990000000-00186. [PMID: 38189438 DOI: 10.1097/crd.0000000000000636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Geriatric patients frequently encounter orthostatic hypotension (OH), a multifaceted condition characterized by a significant drop in blood pressure upon assuming an upright position. As the elderly population is particularly susceptible to OH, our review endeavors to comprehensively explore the complex nature of this condition and various factors contributing to its development. We investigate the impact of comorbidities, polypharmacy, age-related physiological changes, and autonomic dysfunction in the pathogenesis of OH. Geriatric patients with OH are faced with an elevated risk of falls, syncope, a decline in their overall quality of life, and hence increased mortality. These implications require careful consideration, necessitating a thorough examination of therapeutic strategies. We evaluate various pharmaceutical and nonpharmacological therapies, delving into the effectiveness and safety of each approach in managing OH within geriatric populations. We explore the role of pharmacotherapy in alleviating symptoms and mitigating OH-related complications, as well as the potential benefits of volume expansion techniques to augment blood volume and stabilize blood pressure. We place particular emphasis on the significance of lifestyle changes and nonpharmacological interventions in enhancing OH management among the elderly. These interventions encompass dietary modifications, regular physical activity, and postural training, all tailored to the unique needs of the individual patient. To optimize outcomes and ensure patient safety, we underscore the importance of individualized treatment plans that take into account the geriatric patient's overall health status, existing comorbidities, and potential interactions with other medications. This review aims to improve clinical practice and patient outcomes by advocating for early detection, properly tailored management, and targeted interventions to address OH in the elderly population. By raising awareness of OH's prevalence and complexities among healthcare professionals, we hope to foster a comprehensive understanding of OH and contribute to the overall wellness and quality of life of this vulnerable demographic.
Collapse
Affiliation(s)
- Varsha Srinivas
- From the PES Institute of Medical Sciences and Research, India
| | | | | | - Tanveer Shaik
- Avalon University School Of Medicine, Willemstad, Curacao
| | | | - Ramsha Mahmood
- Avalon University School Of Medicine, Willemstad, Curacao
| | - Nikita Garg
- Children's Hospital of Michigan, Detroit, MI
| | - Priyanka Aggarwal
- Maharishi Markandeshwar Institute of Medical Science & Research, Mullana, Haryana, India
| | - Rohit Jain
- Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| |
Collapse
|
9
|
Hoenemann JN, Moestl S, Diedrich A, Mulder E, Frett T, Petrat G, Pustowalow W, Arz M, Schmitz MT, Heusser K, Lee SMC, Jordan J, Tank J, Hoffmann F. Impact of daily artificial gravity on autonomic cardiovascular control following 60-day head-down tilt bed rest. Front Cardiovasc Med 2023; 10:1250727. [PMID: 37953766 PMCID: PMC10634666 DOI: 10.3389/fcvm.2023.1250727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Impaired cardiovascular autonomic control following space flight or immobilization may limit the ability to cope with additional hemodynamic stimuli. Head-down tilt bedrest is an established terrestrial analog for space flight and offers the opportunity to test potential countermeasures for autonomic cardiovascular deconditioning. Previous studies revealed a possible benefit of daily artificial gravity on cardiovascular autonomic control following head-down tilt bedrest, but there is a need for efficiency in a long-term study before an artificial gravity facility would be brought to space. We hypothesized that artificial gravity through short-arm centrifugation attenuates functional adaptions of autonomic function during head-down tilt bed rest. 24 healthy persons (8 women, 33.4 ± 9.3 years, 24.3 ± 2.1 kg/m2) participated in the 60-day head-down tilt bed rest (AGBRESA) study. They were assigned to three groups, 30 min/day continuous, or 6(5 min intermittent short-arm centrifugation, or a control group. We assessed autonomic cardiovascular control in the supine position and in 5 minutes 80° head-up tilt position before and immediately after bed rest. We computed heart rate variability (HRV) in the time (rmssd) and frequency domain, blood pressure variability, and baroreflex sensitivity (BRS). RR interval corrected rmssd was reduced supine (p = 0.0358) and during HUT (p = 0.0161). Heart rate variability in the high-frequency band (hf-RRI; p = 0.0004) and BRS (p < 0.0001) decreased, whereas blood pressure variability in the low-frequency band (lf-SBP, p = 0.0008) increased following bedrest in all groups. We did not detect significant interactions between bedrest and interventions. We conclude that up to daily 30 min of artificial gravity on a short-arm centrifuge with 1Gz at the center of mass do not suffice to prevent changes in autonomic cardiovascular control following 60-day of 6° head-down tilt bed rest. Clinical Trial Registration: https://drks.de/search/en/trial/DRKS00015677, identifier, DRKS00015677.
Collapse
Affiliation(s)
- J.-N. Hoenemann
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne, Cologne, Germany
| | - S. Moestl
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - A. Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN, United States
| | - E. Mulder
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - T. Frett
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - G. Petrat
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - W. Pustowalow
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - M. Arz
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - M.-T. Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - K. Heusser
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - S. M. C. Lee
- Wyle Laboratories, Life Sciences and Systems Division, Houston, TX, United States
| | - J. Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Head of Aerospace Medicine, University of Cologne, Germany, Cologne
| | - J. Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - F. Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Hajj-Boutros G, Sonjak V, Faust A, Hedge E, Mastrandrea C, Lagacé JC, St-Martin P, Naz Divsalar D, Sadeghian F, Chevalier S, Liu-Ambrose T, Blaber AP, Dionne IJ, Duchesne S, Hughson R, Kontulainen S, Theou O, Morais JA. Impact of 14 Days of Bed Rest in Older Adults and an Exercise Countermeasure on Body Composition, Muscle Strength, and Cardiovascular Function: Canadian Space Agency Standard Measures. Gerontology 2023; 69:1284-1294. [PMID: 37717560 PMCID: PMC10634275 DOI: 10.1159/000534063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Head-down bed rest (HDBR) has long been used as an analog to microgravity, and it also enables studying the changes occurring with aging. Exercise is the most effective countermeasure for the deleterious effects of inactivity. The aim of this study was to investigate the efficacy of an exercise countermeasure in healthy older participants on attenuating musculoskeletal deconditioning, cardiovascular fitness level, and muscle strength during 14 days of HDBR as part of the standard measures of the Canadian Space Agency. METHODS Twenty-three participants (12 males and 11 females), aged 55-65 years, were admitted for a 26-day inpatient stay at the McGill University Health Centre. After 5 days of baseline assessment tests, they underwent 14 days of continuous HDBR followed by 7 days of recovery with repeated tests. Participants were randomized to passive physiotherapy or an exercise countermeasure during the HDBR period consisting of 3 sessions per day of either high-intensity interval training (HIIT) or low-intensity cycling or strength exercises for the lower and upper body. Peak aerobic power (V̇O2peak) was determined using indirect calorimetry. Body composition was assessed by dual-energy X-ray absorptiometry, and several muscle group strengths were evaluated using an adjustable chair dynamometer. A vertical jump was used to assess whole-body power output, and a tilt test was used to measure cardiovascular and orthostatic challenges. Additionally, changes in various blood parameters were measured as well as the effects of exercise countermeasure on these measurements. RESULTS There were no differences at baseline in main characteristics between the control and exercise groups. The exercise group maintained V̇O2peak levels similar to baseline, whereas it decreased in the control group following 14 days of HDBR. Body weight significantly decreased in both groups. Total and leg lean masses decreased in both groups. However, total body fat mass decreased only in the exercise group. Isometric and isokinetic knee extension muscle strength were significantly reduced in both groups. Peak velocity, flight height, and flight time were significantly reduced in both groups with HDBR. CONCLUSION In this first Canadian HDBR study in older adults, an exercise countermeasure helped maintain aerobic fitness and lean body mass without affecting the reduction of knee extension strength. However, it was ineffective in protecting against orthostatic intolerance. These results support HIIT as a promising approach to preserve astronaut health and functioning during space missions, and to prevent deconditioning as a result of hospitalization in older adults.
Collapse
Affiliation(s)
- Guy Hajj-Boutros
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada,
| | - Vita Sonjak
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Andréa Faust
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Eric Hedge
- Department of Kinesiology, Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Carmelo Mastrandrea
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jean-Christophe Lagacé
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe St-Martin
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Donya Naz Divsalar
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farshid Sadeghian
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stéphanie Chevalier
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- School of Human Nutrition, McGill University, Montreal, Québec, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew P Blaber
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Isabelle J Dionne
- Faculté des Sciences de l'activité Physique, Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Duchesne
- Department of Radiology and Nuclear Medicine, Université Laval, Quebec City, Québec, Canada
- CERVO Brain Research Center, Quebec City, Québec, Canada
| | - Richard Hughson
- Department of Kinesiology, Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olga Theou
- Division of Geriatric Medicine, Queen Elizabeth II Health Sciences Centre, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - José A Morais
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Division of Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| |
Collapse
|
11
|
Mastrandrea CJ, Hedge ET, Robertson AD, Heckman GA, Ho J, Granados Unger F, Hughson RL. High-intensity exercise does not protect against orthostatic intolerance following bedrest in 55- to 65-yr-old men and women. Am J Physiol Regul Integr Comp Physiol 2023; 325:R107-R119. [PMID: 37184226 DOI: 10.1152/ajpregu.00315.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Prolonged bedrest provokes orthostatic hypotension and intolerance of upright posture. Limited data are available on the cardiovascular responses of older adults to head-up tilt following bedrest, with no studies examining the potential benefits of exercise to mitigate intolerance in this age group. This randomized controlled trial of head-down bedrest (HDBR) in 55- to 65-yr-old men and women investigated if exercise could avert post-HDBR orthostatic intolerance. Twenty-two healthy older adults (11 female) underwent a strict 14-day HDBR and were assigned to either an exercise (EX) or control (CON) group. The exercise intervention included high-intensity, aerobic, and resistance exercises. Head-up tilt-testing to a maximum of 15 minutes was performed at baseline (Pre-Bedrest) and immediately after HDBR (R1), as well as 6 days (R6) and 4 weeks (R4wk) later. At Pre-Bedrest, three participants did not complete the full 15 minutes of tilt. At R1, 18 did not finish, with no difference in tilt end time between CON (422 ± 287 s) and EX (409 ± 346 s). No differences between CON and EX were observed at R6 or R4wk. At R1, just 1 participant self-terminated the test with symptoms, while 12 others reported symptoms only after physiological test termination criteria were reached. Finishers on R1 protected arterial pressure with higher total peripheral resistance relative to Pre-Bedrest. Cerebral blood velocity decreased linearly with reductions in arterial pressure, end-tidal CO2, and cardiac output. High-intensity interval exercise did not benefit post-HDBR orthostatic tolerance in older adults. Multiple factors were associated with the reduction in cerebral blood velocity leading to intolerance.
Collapse
Affiliation(s)
| | - Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew D Robertson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | - George A Heckman
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | - Joanne Ho
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | - Federico Granados Unger
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
12
|
Isaac RO, Corrado J, Sivan M. Detecting Orthostatic Intolerance in Long COVID in a Clinic Setting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105804. [PMID: 37239531 DOI: 10.3390/ijerph20105804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
INTRODUCTION A likely mechanism of Long COVID (LC) is dysautonomia, manifesting as orthostatic intolerance (OI). In our LC service, all patients underwent a National Aeronautics and Space Administration (NASA) Lean Test (NLT), which can detect OI syndromes of Postural Tachycardia Syndrome (PoTS) or Orthostatic Hypotension (OH) in a clinic setting. Patients also completed the COVID-19 Yorkshire Rehabilitation Scale (C19-YRS), a validated LC outcome measure. Our objectives in this retrospective study were (1) to report on the findings of the NLT; and (2) to compare findings from the NLT with LC symptoms reported on the C19-YRS. METHODS NLT data, including maximum heart rate increase, blood pressure decrease, number of minutes completed and symptoms experienced during the NLT were extracted retrospectively, together with palpitation and dizziness scores from the C19-YRS. Mann-Witney U tests were used to examine for statistical difference in palpitation or dizziness scores between patients with normal NLT and those with abnormal NLT. Spearman's rank was used to examine the correlation between the degree of postural HR and BP change with C19-YRS symptom severity score. RESULTS Of the 100 patients with LC recruited, 38 experienced symptoms of OI during the NLT; 13 met the haemodynamic screening criteria for PoTS and 9 for OH. On the C19-YRS, 81 reported dizziness as at least a mild problem, and 68 for palpitations being at least a mild problem. There was no significant statistical difference between reported dizziness or palpitation scores in those with normal NLT and those with abnormal NLT. The correlation between symptom severity score and NLT findings was <0.16 (poor). CONCLUSIONS We have found evidence of OI, both symptomatically and haemodynamically in patients with LC. The severity of palpitations and dizziness reported on the C19-YRS does not appear to correlate with NLT findings. We would recommend using the NLT in all LC patients in a clinic setting, regardless of presenting LC symptoms, due to this inconsistency.
Collapse
Affiliation(s)
- Robert Oliver Isaac
- National Demonstration Centre for Rehabilitation, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
- Long COVID Rehabilitation Service, Leeds Community Healthcare Trust, Leeds LS6 1PF, UK
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | - Joanna Corrado
- National Demonstration Centre for Rehabilitation, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
- Long COVID Rehabilitation Service, Leeds Community Healthcare Trust, Leeds LS6 1PF, UK
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| | - Manoj Sivan
- National Demonstration Centre for Rehabilitation, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
- Long COVID Rehabilitation Service, Leeds Community Healthcare Trust, Leeds LS6 1PF, UK
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, UK
| |
Collapse
|
13
|
Giovanelli L, Malacarne M, Pagani M, Biolo G, Mekjavic IB, Bernardelli G, Lucini D. Moderate Aerobic Exercise Reduces the Detrimental Effects of Hypoxia on Cardiac Autonomic Control in Healthy Volunteers. J Pers Med 2023; 13:jpm13040585. [PMID: 37108971 PMCID: PMC10146556 DOI: 10.3390/jpm13040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Physical inactivity increases cardiometabolic risk through a variety of mechanisms, among which alterations of immunological, metabolic, and autonomic control systems may play a pivotal role. Physical inactivity is frequently associated with other factors that may further worsen prognosis. The association between physical inactivity and hypoxia is particularly interesting and characterizes several conditions—whether physiological (e.g., residing or trekking at high altitude and space flights) or pathological (e.g., chronic cardiopulmonary diseases and COVID-19). In this randomized intervention study, we investigated the combined effects of physical inactivity and hypoxia on autonomic control in eleven healthy and physically active male volunteers, both at baseline (ambulatory) conditions and, in a randomized order, hypoxic ambulatory, hypoxic bedrest, and normoxic bedrest (i.e., a simple experimental model of physical inactivity). Autoregressive spectral analysis of cardiovascular variabilities was employed to assess cardiac autonomic control. Notably, we found hypoxia to be associated with an impairment of cardiac autonomic control, especially when combined with bedrest. In particular, we observed an impairment of indices of baroreflex control, a reduction in the marker of prevalent vagal control to the SA node, and an increase in the marker of sympathetic control to vasculature.
Collapse
|
14
|
Affiliation(s)
| | - Harsha Master
- Lead covid assessment and rehabilitation service, Hertfordshire Community NHS Trust, UK
| | | | - Stephen Halpin
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, UK
| | | | - Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| |
Collapse
|
15
|
Sorokina ND, Pertsov SS, Selitsky GV, Zherdeva AS, Tsagashek AV. [Impact of COVID-19 on some neurological and psychological features in epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:7-11. [PMID: 36946390 DOI: 10.17116/jnevro20231230317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The new coronavirus infection spread around the world in a very short time and turned into a pandemic with a wave-like flow for more than two years. COVID-19infection affects selectively various organs and systems, including the nervous system; neurological manifestations have been reported, including anosmia, encephalopathy, stroke, epileptogenic disorders, which necessitates studies of the course of brain diseases, among which epilepsy occupies a significant place.
Collapse
Affiliation(s)
- N D Sorokina
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - S S Pertsov
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - G V Selitsky
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A S Zherdeva
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A V Tsagashek
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
16
|
Barkaszi I, Ehmann B, Tölgyesi B, Balázs L, Altbäcker A. Are head-down tilt bedrest studies capturing the true nature of spaceflight-induced cognitive changes? A review. Front Physiol 2022; 13:1008508. [PMID: 36582360 PMCID: PMC9792854 DOI: 10.3389/fphys.2022.1008508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Although a number of studies have examined cognitive functions in space, the reasons behind the observed changes described by space research and anecdotal reports have not yet been elucidated. A potential source of cognitive changes is the cephalad fluid shift in the body caused by the lack of hydrostatic pressure under microgravity. These alterations can be modeled under terrestrial conditions using ground-based studies, such as head-down tilt bedrest (HDBR). In this review, we compare the results of the space and HDBR cognitive research. Results for baseline and in-flight/in-HDBR comparisons, and for baseline and post-flight/post-HDBR comparisons are detailed regarding sensorimotor skills, time estimation, attention, psychomotor speed, memory, executive functions, reasoning, mathematical processing, and cognitive processing of emotional stimuli. Beyond behavioral performance, results regarding brain electrical activity during simulated and real microgravity environments are also discussed. Finally, we highlight the research gaps and suggest future directions.
Collapse
Affiliation(s)
- Irén Barkaszi
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
17
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
18
|
Goh CH, Celler BG, Lovell NH, Lim E, Lim WY. A Comparison of Haemodynamic Responses between Head-Up Tilt and Lower Body Negative Pressure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4439-4444. [PMID: 36086388 DOI: 10.1109/embc48229.2022.9871420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orthostatic intolerance (OI), a disorder of the autonomic nervous system, it is the development of symptoms when standing upright which are relieved when reclining. Head-up tilt (HUT) table test is a common test for assessing orthostatic tolerance. However, HUT is limited with low sensitivity and specificity. Another approach to stimulate the changing direction and value of the gravity field vector is the lower body negative pressure (LBNP) chamber. The aims of the study is to evaluate the physiological responses of healthy subjects on HUT and LBNP, and examine the relations of two tests. A total of 19 subjects were recruited. A validated wearable device, Sotera Visi Mobile was use to collect physiological signals simultaneously throughout the experiment procedures. Each subject went through a baseline supine rest, 70o of HUT test, another round of baseline supine rest, followed by activation of LBNP test. Three level of suction were applied, i.e. -30 mmHg, -40 mmHg, and -50 mmHg. In this pilot study, healthy subjects showed significantly increased of heart rate, and decreased of systolic blood pressure and diastolic blood pressure, in both HUT and LBNP tests. Although both tests are capable of stimulating a decreased blood volume in the central circulation, but the physiological responses behaved differently and shown only very week correlation. This suggesting that a combination of LBNP test with HUT test might work the best in orthostatic intolerance assessment.
Collapse
|
19
|
Spiesshoefer J, Regmi B, Ottaviani MM, Kahles F, Giannoni A, Borrelli C, Passino C, Macefield V, Dreher M. Sympathetic and Vagal Nerve Activity in COPD: Pathophysiology, Presumed Determinants and Underappreciated Therapeutic Potential. Front Physiol 2022; 13:919422. [PMID: 35845993 PMCID: PMC9281604 DOI: 10.3389/fphys.2022.919422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
This article explains the comprehensive state of the art assessment of sympathetic (SNA) and vagal nerve activity recordings in humans and highlights the precise mechanisms mediating increased SNA and its corresponding presumed clinical determinants and therapeutic potential in the context of chronic obstructive pulmonary disease (COPD). It is known that patients with COPD exhibit increased muscle sympathetic nerve activity (MSNA), as measured directly using intraneural microelectrodes—the gold standard for evaluation of sympathetic outflow. However, the underlying physiological mechanisms responsible for the sympathoexcitation in COPD and its clinical relevance are less well understood. This may be related to the absence of a systematic approach to measure the increase in sympathetic activity and the lack of a comprehensive approach to assess the underlying mechanisms by which MSNA increases. The nature of sympathoexcitation can be dissected by distinguishing the heart rate increasing properties (heart rate and blood pressure variability) from the vasoconstrictive drive to the peripheral vasculature (measurement of catecholamines and MSNA) (Graphical Abstract Figure 1). Invasive assessment of MSNA to the point of single unit recordings with analysis of single postganglionic sympathetic firing, and hence SNA drive to the peripheral vasculature, is the gold standard for quantification of SNA in humans but is only available in a few centres worldwide because it is costly, time consuming and requires a high level of training. A broad picture of the underlying pathophysiological determinants of the increase in sympathetic outflow in COPD can only be determined if a combination of these tools are used. Various factors potentially determine SNA in COPD (Graphical Abstract Figure 1): Obstructive sleep apnoea (OSA) is highly prevalent in COPD, and leads to repeated bouts of upper airway obstructions with hypoxemia, causing repetitive arousals. This probably produces ongoing sympathoexcitation in the awake state, likely in the “blue bloater” phenotype, resulting in persistent vasoconstriction. Other variables likely describe a subset of COPD patients with increase of sympathetic drive to the heart, clinically likely in the “pink puffer” phenotype. Pharmacological treatment options of increased SNA in COPD could comprise beta blocker therapy. However, as opposed to systolic heart failure a similar beneficial effect of beta blocker therapy in COPD patients has not been shown. The point is made that although MSNA is undoubtedly increased in COPD (probably independently from concomitant cardiovascular disease), studies designed to determine clinical improvements during specific treatment will only be successful if they include adequate patient selection and translational state of the art assessment of SNA. This would ideally include intraneural recordings of MSNA and—as a future perspective—vagal nerve activity all of which should ideally be assessed both in the upright and in the supine position to also determine baroreflex function.
Collapse
Affiliation(s)
- Jens Spiesshoefer
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- *Correspondence: Jens Spiesshoefer, , orcid.org/0000-0001-8205-1749
| | - Binaya Regmi
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Florian Kahles
- Department of Cardiology and Vascular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chiara Borrelli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Vaughan Macefield
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
20
|
Tamma G, Di Mise A, Ranieri M, Centrone M, Venneri M, D'Agostino M, Ferrulli A, Šimunič B, Narici M, Pisot R, Valenti G. Early Biomarkers of Altered Renal Function and Orthostatic Intolerance During 10-day Bedrest. Front Physiol 2022; 13:858867. [PMID: 35514354 PMCID: PMC9065601 DOI: 10.3389/fphys.2022.858867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to actual or simulated microgravity results in alterations of renal function, fluid redistribution, and bone loss, which is coupled to a rise of urinary calcium excretion. We provided evidence that high calcium delivery to the collecting duct reduces local Aquaporin 2 (AQP2)-mediated water reabsorption under vasopressin action, thus limiting the maximal urinary concentration to reduce calcium saturation. To investigate early renal adaptation into simulated microgravity, we investigated the effects of 10 days of strict bedrest in 10 healthy volunteers. We report here that 10 days of inactivity are associated with a transient, significant decrease (day 5) in vasopressin (copeptin) paralleled by a decrease in AQP2 excretion, consistent with an increased central volume to the heart, resulting in reduced water reabsorption. Moreover, bedrest caused a significant increase in calciuria secondary to bone demineralization paralleled by a decrease in PTH. Urinary osteopontin, a glycoprotein exerting a protective effect on stone formation, was significantly reduced during bedrest. Moreover, a significant increase in adrenomedullin (day 5), a peptide with vasodepressor properties, was observed at day 5, which may contribute to the known reduced orthostatic capacity post-bedrest. We conclude that renal function is altered in simulated microgravity and is associated with an early increase in the risk of stone formation and reduced orthostatic capacity post-bedrest within a few days of inactivity.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Mariagrazia D'Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Angela Ferrulli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Boštjan Šimunič
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Rado Pisot
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
21
|
Jordan J, Limper U, Tank J. Cardiovascular autonomic nervous system responses and orthostatic intolerance in astronauts and their relevance in daily medicine. Neurol Sci 2022; 43:3039-3051. [PMID: 35194757 PMCID: PMC9018660 DOI: 10.1007/s10072-022-05963-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
Background The harsh environmental conditions during space travel, particularly weightlessness, impose a major burden on the human body including the cardiovascular system. Given its importance in adjusting the cardiovascular system to environmental challenges, the autonomic nervous system has been in the focus of scientists and clinicians involved in human space flight. This review provides an overview on human autonomic research under real and simulated space conditions with a focus on orthostatic intolerance. Methods The authors conducted a targeted literature search using Pubmed. Results Overall, 120 articles were identified and included in the review. Conclusions Postflight orthostatic intolerance is commonly observed in astronauts and could pose major risks when landing on another celestial body. The phenomenon likely results from changes in volume status and adaptation of the autonomic nervous system to weightlessness. Over the years, various non-pharmacological and pharmacological countermeasures have been investigated. In addition to enabling safe human space flight, this research may have implications for patients with disorders affecting cardiovascular autonomic control on Earth.
Collapse
Affiliation(s)
- Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center DLR, Linder Hoehe, 51147, Cologne, Germany. .,Aerospace Medicine, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center DLR, Linder Hoehe, 51147, Cologne, Germany.,Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center DLR, Linder Hoehe, 51147, Cologne, Germany
| |
Collapse
|
22
|
Efstathiou V, Stefanou MI, Demetriou M, Siafakas N, Makris M, Tsivgoulis G, Zoumpourlis V, Kympouropoulos S, Tsoporis J, Spandidos D, Smyrnis N, Rizos E. Long COVID and neuropsychiatric manifestations (Review). Exp Ther Med 2022; 23:363. [PMID: 35493431 PMCID: PMC9019760 DOI: 10.3892/etm.2022.11290] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
There is accumulating evidence in the literature indicating that a number of patients with coronavirus disease 2019 (COVID-19) may experience a range of neuropsychiatric symptoms, persisting or even presenting following the resolution of acute COVID-19. Among the neuropsychiatric manifestations more frequently associated with ‘long COVID’ are depression, anxiety, post-traumatic stress disorder, sleep disturbances, fatigue and cognitive deficits, that can potentially be debilitating and negatively affect patients' wellbeing, albeit in the majority of cases symptoms tend to improve over time. Despite variations in results obtained from studies using different methodological approaches to define ‘long COVID’ syndrome, the most widely accepted factors associated with a higher risk of developing neuropsychiatric manifestations include the severity of foregoing COVID-19, the female sex, the presence of comorbidities, a history of mental health disease and an elevation in the levels of inflammatory markers, albeit further research is required to establish causal associations. To date, the pathophysiological mechanisms implicated in neuropsychiatric manifestations of ‘long COVID’ remain only partially elucidated, while the role of the indirect effects of the COVID-19 pandemic, such as social isolation and uncertainty concerning social, financial and health recovery post-COVID, have also been highlighted. Given the alarming effects of ‘long-COVID’, interdisciplinary cooperation for the early identification of patients who are at a high risk of persistent neuropsychiatric presentations, beyond COVID-19 recovery, is crucial to ensure that appropriate integrated physical and mental health support is provided, with the aim of mitigating the risks of long-term disability at a societal and individual level.
Collapse
Affiliation(s)
- Vasiliki Efstathiou
- Second Department of Psychiatry, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Marina Demetriou
- Second Department of Psychiatry, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Nikolaos Siafakas
- Clinical Microbiology Laboratory, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Michael Makris
- Allergy Unit, Second Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Athens 11635, Greece
| | - Stylianos Kympouropoulos
- Second Department of Psychiatry, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - James Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Demetrios Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, Athens 12462, Greece
| |
Collapse
|
23
|
Orthostatic intolerance: a frailty marker for older adults. Eur Geriatr Med 2022; 13:675-684. [PMID: 35147907 DOI: 10.1007/s41999-022-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Frailty, orthostatic blood pressure changes (OBPC), and orthostatic intolerance syndrome (OIS) are common in geriatric patients. However, the results of the studies evaluating the relationship between these entities are discordant. We aimed to investigate the association between frailty and OIS with or without OBPC. METHODS Comprehensive geriatric assessment (CGA), frailty assessment, OBPC evaluations in the active-standing test (1st, 3rd, 5th, and 10th min), OIS investigation both in history before the test (self-reported OIS) and emerged during the active-standing test, and sarcopenia assessment via BIA and handgrip strength (HGS) were performed in 102 geriatric outpatients. RESULTS Patients were divided into three categories according to their frailty status (non-frail, prefrail, and frail) by Modified Fried Frailty Index (FFI) and Clinical Frailty Scale (CFS). Prevalence of self-reported OIS and OIS during the test were statistically higher in the frail group assessed by both frailty scales (P value: 0.001 for CFS, P value < 0.0001 for FFI, and P value: 0.001 for CFS, P value: 0.007 for FFI, respectively). Logistic regression analysis showed that OIS significantly increased frailty assessed both by FFI and CFS, when adjusted for age, sex, comorbidities, CGA, and sarcopenia (For FFI, OR: 19.37; 95% CI: 2.38-157.14; P value: 0.006 and for CFS OR: 4.32; 95% CI: 1.184-11.47; P value: 0.003, respectively). CONCLUSION To the best of our knowledge, this is the first study defining OIS as symptoms both self-reported and provoked during the test, and showed a strong correlation between OIS and frailty. OIS may be defined as a multifactorial and independent marker for frailty, regardless of OBPC. Further prospective investigations are warranted to support the relationships between OIS and frailty.
Collapse
|
24
|
Patel ABU, Weber V, Gourine AV, Ackland GL. The potential for autonomic neuromodulation to reduce perioperative complications and pain: a systematic review and meta-analysis. Br J Anaesth 2022; 128:135-149. [PMID: 34801224 PMCID: PMC8787777 DOI: 10.1016/j.bja.2021.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Autonomic dysfunction promotes organ injury after major surgery through numerous pathological mechanisms. Vagal withdrawal is a key feature of autonomic dysfunction, and it may increase the severity of pain. We systematically evaluated studies that examined whether vagal neuromodulation can reduce perioperative complications and pain. METHODS Two independent reviewers searched PubMed, EMBASE, and the Cochrane Register of Controlled Clinical Trials for studies of vagal neuromodulation in humans. Risk of bias was assessed; I2 index quantified heterogeneity. Primary outcomes were organ dysfunction (assessed by measures of cognition, cardiovascular function, and inflammation) and pain. Secondary outcomes were autonomic measures. Standardised mean difference (SMD) using the inverse variance random-effects model with 95% confidence interval (CI) summarised effect sizes for continuous outcomes. RESULTS From 1258 records, 166 full-text articles were retrieved, of which 31 studies involving patients (n=721) or volunteers (n=679) met the inclusion criteria. Six studies involved interventional cardiology or surgical patients. Indirect stimulation modalities (auricular [n=23] or cervical transcutaneous [n=5]) were most common. Vagal neuromodulation reduced pain (n=10 studies; SMD=2.29 [95% CI, 1.08-3.50]; P=0.0002; I2=97%) and inflammation (n=6 studies; SMD=1.31 [0.45-2.18]; P=0.003; I2=91%), and improved cognition (n=11 studies; SMD=1.74 [0.96-2.52]; P<0.0001; I2=94%) and cardiovascular function (n=6 studies; SMD=3.28 [1.96-4.59]; P<0.00001; I2=96%). Five of six studies demonstrated autonomic changes after vagal neuromodulation by measuring heart rate variability, muscle sympathetic nerve activity, or both. CONCLUSIONS Indirect vagal neuromodulation improves physiological measures associated with limiting organ dysfunction, although studies are of low quality, are susceptible to bias and lack specific focus on perioperative patients.
Collapse
Affiliation(s)
- Amour B U Patel
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Valentin Weber
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| |
Collapse
|
25
|
Magnavita N, Di Prinzio RR, Arnesano G, Cerrina A, Gabriele M, Garbarino S, Gasbarri M, Iuliano A, Labella M, Matera C, Mauro I, Barbic F. Association of Occupational Distress and Low Sleep Quality with Syncope, Presyncope, and Falls in Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312283. [PMID: 34886008 PMCID: PMC8657064 DOI: 10.3390/ijerph182312283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Syncope and presyncope episodes that occur during work could affect one's safety and impair occupational performance. Few data are available regarding the prevalence of these events among workers. The possible role of sleep quality, mental stress, and metabolic disorders in promoting syncope, presyncope, and falls in workers is unknown. In the present study, 741 workers (male 35.4%; mean age 47 ± 11 years), employed at different companies, underwent clinical evaluation and blood tests, and completed questionnaires to assess sleep quality, occupational distress, and mental disorders. The occurrence of syncope, presyncope, and unexplained falls during working life was assessed via an ad hoc interview. The prevalence of syncope, presyncope, and falls of unknown origin was 13.9%, 27.0%, and 10.3%, respectively. The occurrence of syncope was associated with an increased risk of occupational distress (adjusted odds ratio aOR: 1.62, confidence intervals at 95%: 1.05-2.52), low sleep quality (aOR: 1.79 CI 95%: 1.16-2.77), and poor mental health (aOR: 2.43 CI 95%: 1.52-3.87). Presyncope was strongly associated with occupational distress (aOR: 1.77 CI 95%: 1.25-2.49), low sleep quality (aOR: 2.95 CI 95%: 2.08-4.18), and poor mental health (aOR: 2.61 CI 95%: 1.78-3.84), while no significant relationship was found between syncope or presyncope and metabolic syndrome. These results suggest that occupational health promotion interventions aimed at improving sleep quality, reducing stressors, and increasing worker resilience might reduce syncope and presyncope events in the working population.
Collapse
Affiliation(s)
- Nicola Magnavita
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
- Department of Woman, Child & Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Local Sanitary Unit Roma4, 00053 Civitavecchia, Italy; (A.C.); (M.G.); (M.G.); (M.L.); (C.M.)
- Correspondence: ; Tel.: +39-3473300367
| | - Reparata Rosa Di Prinzio
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
| | - Gabriele Arnesano
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
| | - Anna Cerrina
- Local Sanitary Unit Roma4, 00053 Civitavecchia, Italy; (A.C.); (M.G.); (M.G.); (M.L.); (C.M.)
| | - Maddalena Gabriele
- Local Sanitary Unit Roma4, 00053 Civitavecchia, Italy; (A.C.); (M.G.); (M.G.); (M.L.); (C.M.)
| | - Sergio Garbarino
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI), 16132 Genoa, Italy
| | - Martina Gasbarri
- Local Sanitary Unit Roma4, 00053 Civitavecchia, Italy; (A.C.); (M.G.); (M.G.); (M.L.); (C.M.)
| | - Angela Iuliano
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
| | - Marcella Labella
- Local Sanitary Unit Roma4, 00053 Civitavecchia, Italy; (A.C.); (M.G.); (M.G.); (M.L.); (C.M.)
| | - Carmela Matera
- Local Sanitary Unit Roma4, 00053 Civitavecchia, Italy; (A.C.); (M.G.); (M.G.); (M.L.); (C.M.)
| | - Igor Mauro
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
| | - Franca Barbic
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (R.R.D.P.); (G.A.); (S.G.); (A.I.); (I.M.); (F.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Internal Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
26
|
Hassani M, Fathi Jouzdani A, Motarjem S, Ranjbar A, Khansari N. How COVID-19 can cause autonomic dysfunctions and postural orthostatic syndrome? A Review of mechanisms and evidence. NEUROLOGY AND CLINICAL NEUROSCIENCE 2021; 9:434-442. [PMID: 34909198 PMCID: PMC8661735 DOI: 10.1111/ncn3.12548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 04/14/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral disease spread by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because the recent pandemic has resulted in significant morbidity and mortality, understanding various aspects of this disease has become critical. SARS-CoV-2 can affect a variety of organs and systems in the body. The autonomic nervous system plays an important role in regulating body functions, and its dysfunction can cause a great deal of discomfort for patients. In this study, we focused on the effect of COVID-19 on the autonomic system and syndromes associated with it, such as postural orthostatic syndrome (POTS).
Collapse
Affiliation(s)
- Mehran Hassani
- Neurosurgery Research Group (NRG)Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Ali Fathi Jouzdani
- Neurosurgery Research Group (NRG)Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Sara Motarjem
- Neurosurgery Research Group (NRG)Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Akram Ranjbar
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Nakisa Khansari
- Department of CardiologySchool of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
27
|
Carandina A, Rodrigues GD, Di Francesco P, Filtz A, Bellocchi C, Furlan L, Carugo S, Montano N, Tobaldini E. Effects of transcutaneous auricular vagus nerve stimulation on cardiovascular autonomic control in health and disease. Auton Neurosci 2021; 236:102893. [PMID: 34649119 DOI: 10.1016/j.autneu.2021.102893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
Autonomic nervous system (ANS) dysfunction is a well-known feature of cardiovascular diseases (CVDs). Studies on heart rate variability (HRV), a non-invasive method useful in investigating the status of cardiovascular autonomic control, have shown that a predominance of sympathetic modulation not only contributes to the progression of CVDs but has a pivotal role in their onset. Current therapies focus more on inhibition of sympathetic activity, but the presence of drug-resistant conditions and the invasiveness of some surgical procedures are an obstacle to complete therapeutic success. On the other hand, targeting the parasympathetic branch of the autonomic nervous system through invasive vagus nerve stimulation (VNS) has shown interesting results as alternative therapeutic approach for CVDs. However, the invasiveness and cost of the surgical procedure limit the clinical applicability of VNS and hinder the research on the physiological pathway involved. Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) seems to represent an important non-invasive alternative with effects comparable to those of VNS with surgical implant. Thus, in the present narrative review, we illustrate the main studies on tVNS performed in healthy subjects and in three key examples of CVDs, namely heart failure, hypertension and atrial fibrillation, highlighting the neuromodulatory effects of this technique.
Collapse
Affiliation(s)
- Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriel Dias Rodrigues
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Pietro Di Francesco
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Annalisa Filtz
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Corrigan SL, Roberts S, Warmington S, Drain J, Main LC. Monitoring stress and allostatic load in first responders and tactical operators using heart rate variability: a systematic review. BMC Public Health 2021; 21:1701. [PMID: 34537038 PMCID: PMC8449887 DOI: 10.1186/s12889-021-11595-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Awareness of the cumulative stress placed on first responders and tactical operators is required to manage acute fatigue, which can impair occupational performance, and may precipitate negative chronic health outcomes. The aim of this review was to investigate the utility of heart rate variability (HRV) to monitor stress and allostatic load among these populations. METHODS A systematic search of Academic Search Complete, MEDLINE complete, PsycINFO, SPORTDiscus and Scopus databases was conducted. Eligibility criteria: original peer reviewed research articles, written in English, published between 1985 and 2020, using human participants employed as a first responder or tactical operator, free from any psychological disorder. RESULTS Of the 360 articles screened, 60 met the inclusion criteria and were included for full text assessment. Articles were classified based on single or repeated stressor exposure and the time of HRV assessment (baseline, during stressor, post stressor). Singular stressful events elicited a reduction in HRV from baseline to during the event. Stressors of greater magnitude reduced HRV for extended durations post stressor. Lower resting HRV was associated with lower situational awareness and impaired decision-making performance in marksmanship and navigation tasks. There were insufficient studies to evaluate the utility of HRV to assess allostatic load in repeated stressor contexts. CONCLUSION A reduction in HRV occurred in response to acute physical and cognitive occupational stressors. A slower rate of recovery of HRV after the completion of acute occupational stressors appears to occur in response to stressors of greater magnitude. The association between lower HRV and lower decision-making performance poses as a useful tool but further investigations on within subject changes between these factors and their relationship is required. More research is required to investigate the suitability of HRV as a measure of allostatic load in repeated stress exposures for fatigue management in first responder and tactical operators.
Collapse
Affiliation(s)
- Sean L Corrigan
- Deakin University, Centre for Sport Research, School of Exercise and Nutrition Sciences, 221 Burwood Highway, Burwood, Victoria, 3125, Australia.
| | - Spencer Roberts
- Deakin University, Institute for Physical Activity and Nutrition, Geelong, Victoria, Australia
| | - Stuart Warmington
- Deakin University, Institute for Physical Activity and Nutrition, Geelong, Victoria, Australia
| | - Jace Drain
- Defence Science and Technology Group, Fishermans Bend, Australia
| | - Luana C Main
- Deakin University, Institute for Physical Activity and Nutrition, Geelong, Victoria, Australia
| |
Collapse
|
29
|
Dani M, Dirksen A, Taraborrelli P, Panagopolous D, Torocastro M, Sutton R, Lim PB. Orthostatic hypotension in older people: considerations, diagnosis and management. Clin Med (Lond) 2021; 21:e275-e282. [PMID: 34001585 DOI: 10.7861/clinmed.2020-1044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orthostatic hypotension (OH) is very common in older people and is encountered daily in emergency departments and medical admissions units. It is associated with a higher risk of falls, fractures, dementia and death, so prompt recognition and treatment are essential. In this review article, we describe the physiology of standing (orthostasis) and the pathophysiology of orthostatic hypotension. We focus particularly on aspects pertinent to older people. We review the evidence and consensus management guidelines for all aspects of management. We also tackle the challenge of concomitant orthostatic hypotension and supine hypertension, providing a treatment overview as well as practical suggestions for management. In summary, orthostatic hypotension (and associated supine hypertension) are common, dangerous and disabling, but adherence to simple structures management strategies can result in major improvements.
Collapse
Affiliation(s)
- Melanie Dani
- Hammersmith Hospital, London, UK and Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R, Lim PB. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond) 2020; 21:e63-e67. [PMID: 33243837 DOI: 10.7861/clinmed.2020-0896] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The SARS-CoV-2 (COVID-19) pandemic has caused unprecedented morbidity, mortality and global disruption. Following the initial surge of infections, focus shifted to managing the longer-term sequelae of illness in survivors. 'Post-acute COVID' (known colloquially as 'long COVID') is emerging as a prevalent syndrome. It encompasses a plethora of debilitating symptoms (including breathlessness, chest pain, palpitations and orthostatic intolerance) which can last for weeks or more following mild illness. We describe a series of individuals with symptoms of 'long COVID', and we posit that this condition may be related to a virus- or immune-mediated disruption of the autonomic nervous system resulting in orthostatic intolerance syndromes. We suggest that all physicians should be equipped to recognise such cases, appreciate the symptom burden and provide supportive management. We present our rationale for an underlying impaired autonomic physiology post-COVID-19 and suggest means of management.
Collapse
Affiliation(s)
- Melanie Dani
- Hammersmith Hospital, London, UK and Imperial College London, London, UK
| | | | | | | | | | - Richard Sutton
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
31
|
Hoffmann F, Rabineau J, Mehrkens D, Gerlach DA, Moestl S, Johannes BW, Caiani EG, Migeotte PF, Jordan J, Tank J. Cardiac adaptations to 60 day head-down-tilt bed rest deconditioning. Findings from the AGBRESA study. ESC Heart Fail 2020; 8:729-744. [PMID: 33191629 PMCID: PMC7835618 DOI: 10.1002/ehf2.13103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Aims Reduced physical activity increases the risk of heart failure; however, non‐invasive methodologies detecting subclinical changes in myocardial function are not available. We hypothesized that myocardial, left ventricular, systolic strain measurements could capture subtle abnormalities in myocardial function secondary to physical inactivity. Methods and results In the AGBRESA study, which assessed artificial gravity through centrifugation as potential countermeasure for space travel, 24 healthy persons (eight women) were submitted to 60 day strict −6° head‐down‐tilt bed rest. Participants were assigned to three groups of eight subjects: a control group, continuous artificial gravity training on a short‐arm centrifuge (30 min/day), or intermittent centrifugation (6 × 5 min/day). We assessed cardiac morphology, function, strain, and haemodynamics by cardiac magnetic resonance imaging (MRI) and echocardiography. We observed no differences between groups and, therefore, conducted a pooled analysis. Consistent with deconditioning, resting heart rate (∆8.3 ± 6.3 b.p.m., P < 0.0001), orthostatic heart rate responses (∆22.8 ± 19.7 b.p.m., P < 0.0001), and diastolic blood pressure (∆8.8 ± 6.6 mmHg, P < 0.0001) increased, whereas cardiac output (∆−0.56 ± 0.94 L/min, P = 0.0096) decreased during bed rest. Left ventricular mass index obtained by MRI did not change. Echocardiographic left ventricular, systolic, global longitudinal strain (∆1.8 ± 1.83%, P < 0.0001) decreased, whereas left ventricular, systolic, global MRI circumferential strain increased not significantly (∆−0.68 ± 1.85%, P = 0.0843). MRI values rapidly returned to baseline during recovery. Conclusion Prolonged head‐down‐tilt bed rest provokes changes in cardiac function, particularly strain measurements, that appear functional rather than mediated through cardiac remodelling. Thus, strain measurements are of limited utility in assessing influences of physical deconditioning or exercise interventions on cardiac function.
Collapse
Affiliation(s)
- Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | - Dennis Mehrkens
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Darius A Gerlach
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Stefan Moestl
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Bernd W Johannes
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy.,Consiglio Nazionale delle Ricerche, Institute of Electronics and Information and Telecommunication Engineering, Milan, Italy
| | | | - Jens Jordan
- Head of the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
32
|
Frett T, Green DA, Mulder E, Noppe A, Arz M, Pustowalow W, Petrat G, Tegtbur U, Jordan J. Tolerability of daily intermittent or continuous short-arm centrifugation during 60-day 6o head down bed rest (AGBRESA study). PLoS One 2020; 15:e0239228. [PMID: 32946482 PMCID: PMC7500599 DOI: 10.1371/journal.pone.0239228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Artificial gravity through short-arm centrifugation has potential as a multi-system countermeasure for deconditioning and cranial fluid shifts that may underlie ocular issues in microgravity. However, the optimal short-arm centrifugation protocol that is effective whilst remaining tolerable has yet to be determined. Given that exposure to centrifugation is associated with presyncope and syncope and in addition motion sickness an intermittent protocol has been suggested to be more tolerable. Therefore, we assessed cardiovascular loading and subjective tolerability of daily short arm centrifugation with either an intermittent or a continuous protocol during long-term head-down bed rest as model for microgravity exposure in a mixed sex cohort. During the Artificial Gravity Bed Rest with European Space Agency (AGBRESA) 60 day 6° head down tilt bed rest study we compared the tolerability of daily +1 Gz exposure at the center of mass centrifugation, either performed continuously for 30 minutes, or intermittedly (6 x 5 minutes). Heart rate and blood pressure were assessed daily during centrifugation along with post motion sickness scoring and rate of perceived exertion. During bed rest, 16 subjects (6 women, 10 men), underwent 960 centrifuge runs in total. Ten centrifuge runs had to be terminated prematurely, 8 continuous runs and 2 intermittent runs, mostly due to pre-syncopal symptoms and not motion sickness. All subjects were, however, able to resume centrifuge training on subsequent days. We conclude that both continuous and intermittent short-arm centrifugation protocols providing artificial gravity equivalent to +1 Gz at the center of mass is tolerable in terms of cardiovascular loading and motion sickness during long-term head down tilt bed rest. However, intermittent centrifugation appears marginally better tolerated, albeit differences appear minor.
Collapse
Affiliation(s)
- Timo Frett
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- * E-mail:
| | - David Andrew Green
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
- King’s College London, London, United Kingdom
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Alexandra Noppe
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Michael Arz
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Willi Pustowalow
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Guido Petrat
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Uwe Tegtbur
- Institutes of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Amirova L, Navasiolava N, Rukavishvikov I, Gauquelin-Koch G, Gharib C, Kozlovskaya I, Custaud MA, Tomilovskaya E. Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Front Physiol 2020; 11:395. [PMID: 32508663 PMCID: PMC7248392 DOI: 10.3389/fphys.2020.00395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background The most applicable human models of weightlessness are −6° head-down bed rest (HDBR) and head-out dry immersion (DI). A detailed experimental comparison of cardiovascular responses in both models has not yet been carried out, in spite of numerous studies having been performed in each of the models separately. Objectives We compared changes in central hemodynamics, autonomic regulation, plasma volume, and water balance induced by −6° HDBR and DI. Methods Eleven subjects participated in a 21-day HDBR and 12 subjects in a 3-day DI. During exposure, measurements of the water balance, blood pressure, and heart rate were performed daily. Plasma volume evolution was assessed by the Dill–Costill method. In order to assess orthostatic tolerance time (OTT), central hemodynamic responses to orthostatic stimuli, and autonomous regulation, the 80° lower body negative pressure–tilt test was conducted before and right after both exposures. Results For most of the studied parameters, the changes were co-directional, although they differed in their extent. The changes in systolic blood pressure and total peripheral resistance after HDBR were more pronounced than those after DI. The OTT was decreased in both groups: to 14.2 ± 3.1 min (vs. 27.9 ± 2.5 min before exposure) in the group of 21-day HDBR and to 8.7 ± 2.1 min (vs. 27.7 ± 1.2 min before exposure) in the group of 3-day DI. Conclusions In general, cardiovascular changes during the 21-day HDBR and 3-day DI were co-directional. In some cases, changes in the parameters after 3-day DI exceeded changes after the 21-day HDBR, while in other cases the opposite was true. Significantly stronger effects of DI on cardiovascular function may be due to hypovolemia and support unloading (supportlessness).
Collapse
Affiliation(s)
- Liubov Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Laboratoire MITOVASC, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France
| | - Nastassia Navasiolava
- Laboratoire MITOVASC, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France
| | - Ilya Rukavishvikov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Claude Gharib
- Institut NeuroMyogène, Université Claude Bernard Lyon 1, Lyon, France
| | - Inessa Kozlovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Marc-Antoine Custaud
- Laboratoire MITOVASC, UMR Institut National de la Santé et de la Recherche Médicale 1083, Centre National de la Recherche Scientifique 6015, Université d'Angers, Angers, France.,Centre de Recherche Clinique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Elena Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Mol A, Maier AB, van Wezel RJA, Meskers CGM. Multimodal Monitoring of Cardiovascular Responses to Postural Changes. Front Physiol 2020; 11:168. [PMID: 32194438 PMCID: PMC7063121 DOI: 10.3389/fphys.2020.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background In the poorly understood relationship between orthostatic hypotension and falls, next to blood pressure (BP), baroreflex sensitivity (BRS) and cerebral autoregulation (CAR) may be key measures. The posture- and movement dependency of orthostatic hypotension requires continuous and unobtrusive monitoring. This may be possible using simultaneous photoplethysmography (PPG), electrocardiography (ECG), and near-infrared spectroscopy (NIRS) signal recordings, from which pulse wave velocity (PWV; potentially useful for BP estimation), BRS and CAR can be derived. The PPG, NIRS and PWV signal correlation with BP and BRS/CAR reliability and validity need to be addressed. Methods In 34 healthy adults (mean age 25 years, inter quartile range 22–45; 10 female), wrist and finger PPG, ECG, bifrontal NIRS (oxygenated and deoxygenated hemoglobin) and continuous BP were recorded during sit to stand and supine to stand movements. Sixteen participants performed slow and rapid supine to stand movements; eighteen other participants performed a 1-min squat movement. Pulse wave velocity (PWV) was defined as the inverse of the ECG R-peak to PPG pulse delay; PPG, NIRS and PWV signal correlation with BP as their Pearson correlations with mean arterial pressure (MAP) within 30 s after the postural changes; BRS as inter beat interval drop divided by systolic BP (SBP) drop during the postural changes; CAR as oxygenated hemoglobin drop divided by MAP drop. BRS and CAR were separately computed using measured and estimated (linear regression) BP. BRS/CAR reliability was defined by the intra class correlation between repeats of the same postural change; validity as the Pearson correlation between BRS/CAR values based on measured and estimated BP. Results The highest correlation with MAP was found for finger PPG and oxygenated hemoglobin, ranging from 0.75–0.79 (sit to stand), 0.66–0.88 (supine to stand), and 0.82–0.94 (1-min squat). BRS and CAR reliability was highest during the different supine to stand movements, ranging from 0.17 – 0.49 (BRS) and 0.42-0.75 (CAR); validity was highest during rapid supine to stand movements, 0.54 and 0.79 respectively. Conclusion PPG-ECG-NIRS recordings showed high correlation with BP and enabled computation of reliable and valid BRS and CAR estimates, suggesting their potential for continuous unobtrusive monitoring of orthostatic hypotension key measures.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medicine and Aged Care @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Carel G M Meskers
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|