1
|
Huang T, Liu S, Ma Y, Ma L, Dang Z. Selenomethionine inhibits the proliferation of hypoxia-induced pulmonary artery smooth muscle cells by inhibiting ROS and HIF-1α-ACE-AngII axis. Sci Rep 2025; 15:11746. [PMID: 40189640 PMCID: PMC11973171 DOI: 10.1038/s41598-025-95793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Recent studies have shown that patients with pulmonary arterial hypertension (PAH) are deficient in nutrients, especially vitamins and minerals. Selenium is a strong antioxidant and there is a correlation between selenium and quality of life in patients with PAH. The purpose of this study was to research whether Selenomethionine (SeMet) can reduce the oxidative damage of pulmonary artery smooth muscle cells (PASMCs) and inhibit the proliferation of PASMCs in hypoxia, and the protective mechanism of SeMet on hypoxia-induced PASMCs. PASMCs were cultured and divided into 5 groups, normoxia group, hypoxia group, and hypoxia + SeMet group (10,20 and 40 µg/ml). It was found that cell activity was elevated and hyperproliferation was observed in the hypoxia group compared to the normoxia control group. Meanwhile, the antioxidant indexes SOD and CAT activities were reduced, T-AOC was decreased, and ROS and MDA contents were elevated in the hypoxia group. The expressions of HIF-1α, ACE, Ang II, VEGF genes and proteins in PASMCs were increased under hypoxia. And SeMet reversed the above changes in antioxidant indicators and proteins, thereby inhibiting the proliferation of PASMCs and promoting apoptosis. Our study found that SeMet may inhibit hypoxia-induced oxidative stress and proliferation in PASMCs by the ROS and HIF-1α-ACE-AngII axis.
Collapse
Affiliation(s)
- Ting Huang
- Department of Public Health, Qinghai Unversity Medical College, Xining 810016, China
| | - Shou Liu
- Department of Public Health, Qinghai Unversity Medical College, Xining 810016, China
| | - Yanting Ma
- Department of Public Health, Qinghai Unversity Medical College, Xining 810016, China
| | - Lan Ma
- Research Center for High Attitude Medicine, Qinghai University Medical College, Xining 810016, China.
| | - Zhancui Dang
- Department of Public Health, Qinghai Unversity Medical College, Xining 810016, China.
| |
Collapse
|
2
|
Fan Q, Wang Y, An Q, Ling Y. Right ventricular dysfunction following surgical repair of tetralogy of Fallot: Molecular pathways and therapeutic prospects. Biomed Pharmacother 2025; 184:117924. [PMID: 39983432 DOI: 10.1016/j.biopha.2025.117924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CHD). Although surgical correction of TOF is possible, patients often face challenges related to right ventricle dysfunction (RVD) post-surgery, which can significantly impact their long-term survival. The causes of RVD in TOF patients are complex, involving both the unique structural characteristics of the TOF heart and damage resulting from surgical interventions. Residual anatomical issues following TOF repair are often unavoidable, placing the RV under stress and leading to the activation of multiple molecular pathways. This review comprehensively outlines the causes of RVD in patients after TOF surgery, particularly focusing the molecular pathways that contribute to RVD, including established signaling pathways as well as emerging pathways identified through transcriptomic analysis of RV myocardium in TOF patients. We also highlight the features of these molecular pathways concerning RVD, as well as the influence of gender disparities on these molecular pathways. By interpreting the causes and molecular mechanisms underlying RVD after TOF surgery, this review provides new insights for managing RVD in repaired TOF, potentially paving the way for targeted therapies aimed at improving long-term outcomes for those affected by RVD.
Collapse
Affiliation(s)
- Qiang Fan
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Yabo Wang
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| | - Yunfei Ling
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Leite LB, Soares LL, Portes AMO, da Silva BAF, Dias TR, Soares TI, Assis MQ, Guimarães-Ervilha LO, Carneiro-Júnior MA, Forte P, Machado-Neves M, Reis ECC, Natali AJ. Combined exercise hinders the progression of pulmonary and right heart harmful remodeling in monocrotaline-induced pulmonary arterial hypertension. J Appl Physiol (1985) 2025; 138:182-194. [PMID: 39611819 DOI: 10.1152/japplphysiol.00379.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
The aim of this study was to test whether combined physical exercise training of moderate intensity executed during the development of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) hinders the progression of pulmonary and right heart harmful functional and structural remodeling in rats. Wistar rats were injected with MCT (60 mg/kg) and after 24 h were exposed to a combined exercise training program: aerobic exercise (treadmill running-60 min/day; 60% of maximum running speed); and resistance exercise (vertical ladder climbing-15 climbs; 60% of maximum carrying load), on alternate days, 5 days/wk, for ∼3 wk. After euthanasia, the lung and right ventricle (RV) were excised and processed for histological, single myocyte, and biochemical analyses. Combined exercise increased the tolerance to physical effort (time until fatigue and relative maximum load) and prevented increases in pulmonary artery resistance (acceleration time (TA)/ejection time (TE)] and reductions in RV function [tricuspid annular plane systolic excursion (TAPSE)]. Moreover, in myocytes isolated from the RV, combined exercise preserved contraction amplitude, as well as contraction and relaxation velocities, and inhibited reductions in the amplitude and maximum speeds to peak and to decay of the intracellular Ca2+ transient. Furthermore, combined exercise avoided RV (RV weight, cardiomyocyte, extracellular matrix, collagen, inflammatory infiltrate, and extracellular matrix) and lung (pulmonary alveoli and alveolar septum) harmful structural remodeling. In addition, combined exercise restricted RV [nitric oxide (NO) and carbonyl protein (CP)] and lung [catalase (CAT), glutathione S-transferase (GST), and NO] oxidative stress. In conclusion, the applied combined exercise regime hinders the progression of pulmonary and right heart functional and structural harmful remodeling in rats with MCT-induced PAH.NEW & NOTEWORTHY This study reveals that combined exercise improves tolerance to physical effort, prevents increases in pulmonary artery resistance, and conserves the right heart function during the progression of pulmonary arterial hypertension. Our analyses show that combined exercise hinders harmful right ventricular and lung structural remodeling and oxidative stress, which reflects in the maintenance of right ventricular myocytes' contractile function by preserving the intracellular calcium cycling. An attenuated progression of the disease impacts positively on its prognosis.
Collapse
Affiliation(s)
- Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Taís Rodrigues Dias
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Thayana Inácia Soares
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Mirian Quintão Assis
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Pedro Forte
- Research Center for Physical Activity and Wellbeing (Livewell), Polytechnic Institute of Bragança, Bragança, Portugal
- CI-ISCE, Higher Instituto of Educational Sciences of the Douro, Penafiel, Portugal
- Department of Sports, Higher Institute of Educational Sciences of the Douro, Penafiel, Portugal
| | - Mariana Machado-Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
Huang X, Ao Y, Zhang L, Yang L. Impact of comprehensive thermal insulation on stress response and immune function in hysteroscopy patients: A retrospective study. Medicine (Baltimore) 2024; 103:e40309. [PMID: 39809188 PMCID: PMC11596532 DOI: 10.1097/md.0000000000040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2024] [Indexed: 01/16/2025] Open
Abstract
This retrospective study explores the impact of comprehensive thermal insulation measures on the stress response of patients undergoing hysteroscopy surgery. A total of 600 patients who underwent hysteroscopy at our hospital from January 2018 to December 2022 were included. Participants were randomly assigned to an observation group (n = 305) and a control group (n = 295). The control group received standard nursing care, whereas the observation group received additional comprehensive thermal insulation measures. We compared body temperature and stress response indicators, including heart rate, diastolic blood pressure, systolic blood pressure, blood glucose, adrenaline, norepinephrine, and C-reactive protein, at 3 time points: before surgery (T0), 30 minutes into surgery (T1), and after surgery (T2). A comparative analysis of immune competence, focusing on the variations in CD3+, CD4+, CD8+ T lymphocyte populations, and CD4+/CD8+ ratios, was conducted between the groups preoperatively and at a 24-hour postoperative juncture. The occurrence of intraoperative complications after surgery was analyzed. The central body temperature in the observation group at T1 and T2 was higher than that of the control group (P < .001). The levels of heart rate, diastolic blood pressure, systolic blood pressure, blood glucose, adrenaline, norepinephrine, and C-reactive protein in the observation group at T1 and T2 were lower than those in the control group (P < .05). The percentage of CD3+, CD4+, CD4+/CD8+ cells in the observation group at 1 day after surgery was higher than those in the control group (P < .05). The incidence of intraoperative and postoperative complications in the observation group after surgery was lower than that in the control group (P < .001). Implementing a comprehensive thermal insulation protocol for patients undergoing hysteroscopy may help maintain core temperature and support immune response following surgery, potentially contributing to a smoother recovery process. Further research is warranted to confirm these findings and better understand the implications for patient care.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Kejiaobu, Xinyu People’s Hospital, Xinyu, Jiangxi, China
| | - Yumin Ao
- Department of Obstetrics and Gynecology, Xinyu Maternal and Child Health Hospital, Xinyu, Jiangxi, China
| | - Liulian Zhang
- Department of Obstetrics and Gynecology, Xinyu Maternal and Child Health Hospital, Xinyu, Jiangxi, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Xinyu Maternal and Child Health Hospital, Xinyu, Jiangxi, China
| |
Collapse
|
5
|
Kosmas K, Papathanasiou AE, Spyropoulos F, Rehman R, Cunha AA, Fredenburgh LE, Perrella MA, Christou H. Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells 2024; 13:1796. [PMID: 39513903 PMCID: PMC11544768 DOI: 10.3390/cells13211796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The role of stress granules (SGs) in pulmonary arterial hypertension (PAH) is unknown. We hypothesized that SG formation contributes to abnormal vascular phenotypes, and cardiac and skeletal muscle dysfunction in PAH. Using the rat Sugen/hypoxia (SU/Hx) model of PAH, we demonstrate the formation of SG puncta and increased expression of SG proteins compared to control animals in lungs, right ventricles, and soleus muscles. Acetazolamide (ACTZ) treatment ameliorated the disease and reduced SG formation in all of these tissues. Primary pulmonary artery smooth muscle cells (PASMCs) from diseased animals had increased SG protein expression and SG number after acute oxidative stress and this was ameliorated by ACTZ. Pharmacologic inhibition of SG formation or genetic ablation of the SG assembly protein (G3BP1) altered the SU/Hx-PASMC phenotype by decreasing proliferation, increasing apoptosis and modulating synthetic and contractile marker expression. In human PAH lungs, we found increased SG puncta in pulmonary arteries compared to control lungs and in human PAH-PASMCs we found increased SGs after acute oxidative stress compared to healthy PASMCs. Genetic ablation of G3BP1 in human PAH-PASMCs resulted in a phenotypic switch to a less synthetic and more contractile phenotype. We conclude that increased SG formation in PASMCs and other tissues may contribute to PAH pathogenesis.
Collapse
Affiliation(s)
- Kosmas Kosmas
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Aimilia Eirini Papathanasiou
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fotios Spyropoulos
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rakhshinda Rehman
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ashley Anne Cunha
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Mark A. Perrella
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helen Christou
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Waddingham MT, Tsuchimochi H, Sonobe T, Sequeira V, Nayeem MJ, Shirai M, Pearson JT, Ogo T. The selective serotonin reuptake inhibitor paroxetine improves right ventricular systolic function in experimental pulmonary hypertension. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100072. [PMID: 39802918 PMCID: PMC11708357 DOI: 10.1016/j.jmccpl.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 01/16/2025]
Abstract
Background Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation. Methods The Su5416/hypoxia (SuHx) rat model was used to induce PH. Rats were treated with paroxetine and compared to vehicle-treated and control groups. Parameters measured included RV morphology, systolic and diastolic function, myofilament protein phosphorylation, GRK2 activity, and sympathetic nervous system (SNS) markers. Results Paroxetine treatment significantly improved RV systolic function, evidenced by increased stroke volume, cardiac output, and ejection fraction, without significantly affecting RV hypertrophy, myosin heavy chain/titin isoform switching, or fibrosis. Enhanced phosphorylation of titin and myosin light chain-2 was observed, correlating positively with improved systolic function. Contrary to the hypothesis, improvements occurred independently of GRK2 inhibition or SNS modulation, suggesting an alternate mechanism, potentially involving antioxidant properties of paroxetine. Conclusion Paroxetine improves RV systolic function in PH rats, likely through mechanisms beyond GRK2 inhibition, possibly related to its antioxidant effects. This highlights the potential of paroxetine in managing RV dysfunction in PH, warranting further investigation into its detailed mechanisms of action and clinical applicability.
Collapse
Affiliation(s)
- Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Vasco Sequeira
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Md Junayed Nayeem
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Physiology, Victoria Heart Institute, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Takeshi Ogo
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
7
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
8
|
Oknińska M, Zajda K, Zambrowska Z, Grzanka M, Paterek A, Mackiewicz U, Szczylik C, Kurzyna M, Piekiełko-Witkowska A, Torbicki A, Kieda C, Mączewski M. Role of Oxygen Starvation in Right Ventricular Decompensation and Failure in Pulmonary Arterial Hypertension. JACC. HEART FAILURE 2024; 12:235-247. [PMID: 37140511 DOI: 10.1016/j.jchf.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
Right ventricular (RV) function and eventually failure determine outcome in patients with pulmonary arterial hypertension (PAH). Initially, RV responds to an increased load caused by PAH with adaptive hypertrophy; however, eventually RV failure ensues. Unfortunately, it is unclear what causes the transition from compensated RV hypertrophy to decompensated RV failure. Moreover, at present, there are no therapies for RV failure; those for left ventricular (LV) failure are ineffective, and no therapies specifically targeting RV are available. Thus there is a clear need for understanding the biology of RV failure and differences in physiology and pathophysiology between RV and LV that can ultimately lead to development of such therapies. In this paper, we discuss RV adaptation and maladaptation in PAH, with a particular focus of oxygen delivery and hypoxia as the principal drivers of RV hypertrophy and failure, and attempt to pinpoint potential sites for therapy.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland
| | - Zuzanna Zambrowska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology at ECZ-Otwock, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland; Centre for Molecular Biophysics, UPR, CNRS 4301, Orléans CEDEX 2, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
9
|
Wang S, Li H, Liu Q, Ma H, Huang L, Yu L, Wu Z. Hydroxycitric Acid Tripotassium Hydrate Attenuates Monocrotaline and Hypoxia-Induced Pulmonary Hypertension in Rats. Int Heart J 2024; 65:318-328. [PMID: 38556339 DOI: 10.1536/ihj.23-350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1β, IL-6, and TGF-β, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.
Collapse
Affiliation(s)
- Shunjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
- Department of Thoracic Surgery, Qinghai Provincial Red Cross Hospital
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| | - Quan Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| | - Husai Ma
- Department of Thoracic Surgery, Qinghai Provincial Red Cross Hospital
| | - Lin Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| | - Laishun Yu
- Department of Pulmonary and Critical Care Medicine, Qinghai Provincial People's Hospital
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
10
|
Chen Y, Ma P, Bo L, Lv Y, Zhou W, Zhou R. Isorhamnetin alleviates symptoms and inhibits oxidative stress levels in rats with pulmonary arterial hypertension. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1616-1623. [PMID: 39539446 PMCID: PMC11556765 DOI: 10.22038/ijbms.2024.75860.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/15/2024] [Indexed: 11/16/2024]
Abstract
Objectives Pulmonary arterial hypertension (PAH) is a malignant pulmonary vascular disease with high mortality. Isorhamnetin (ISO), one of the main natural flavonoids extracted from sea buckthorn, has pharmacological effects such as anti-inflammatory, anti-proliferative and antioxidant. This study aimed to investigate the protective effect of ISO on PAH and its relationship with the phosphorylation of the c-Src tyrosine kinase (p-c-src)/NOX1 signaling pathway. Materials and Methods Ninety-five rats were randomly divided into five groups. The normal group received only a subcutaneous injection of saline, while the other groups received a subcutaneous injection of monocrotaline(MCT) (60 mg/kg) to establish a PAH model. The treatment group received ISO (50, 100, 150 mg/kg/d) treatment for 21 days, and after 21 days, all rat lung tissues were separated. Results The results showed that ISO could significantly improve the hemodynamics of MCT-induced PAH rats, such as mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), and had inhibitory effects on right ventricular hypertrophy in PAH rats, and on pulmonary vascular remodeling in PAH rats. In addition, ISO can reduce the content of 5-hydroxytryptamine (5-HT) in PAH rats, increase the expression of Nrf2 protein in the lung tissue of PAH rats, activate the antioxidant system, enhance the activity of SOD in lung tissue of PAH rats, and inhibit NOX1, 5-HTT, p-c-src and Proliferating Cell Nuclear Antigen(PCNA) protein expression, and decrease MDA content. Conclusion Our research confirmed the therapeutic effect of ISO on MCT-induced PAH rats, which may be related to regulating the p-c-src/NOX1 signaling pathway.
Collapse
Affiliation(s)
- Yefeng Chen
- School of Clinical Medicine, Ningxia Medical University,Yinchuan, China
- These authors contributed equally to this work
| | - Ping Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
- These authors contributed equally to this work
| | - Lei Bo
- Department of Foreign Language Teaching, Ningxia Medical University, Yinchuan, China
| | - Yingjie Lv
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Wei Zhou
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Kuropatkina T, Atiakshin D, Sychev F, Artemieva M, Samoilenko T, Gerasimova O, Shishkina V, Gufranov K, Medvedeva N, LeBaron TW, Medvedev O. Hydrogen Inhalation Reduces Lung Inflammation and Blood Pressure in the Experimental Model of Pulmonary Hypertension in Rats. Biomedicines 2023; 11:3141. [PMID: 38137362 PMCID: PMC10740706 DOI: 10.3390/biomedicines11123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Hydrogen has been shown to exhibit selective antioxidant properties against hydroxyl radicals, and exerts antioxidant and anti-inflammatory effects. The monocrotaline-induced model of pulmonary hypertension is suitable for studying substances with antioxidant activity because oxidative stress is induced by monocrotaline. On day 1, male Wistar rats were subcutaneously injected with a water-alcohol solution of monocrotaline or a control with an only water-alcohol solution. One group of monocrotaline-injected animals was placed in a plastic box that was constantly ventilated with atmospheric air containing 4% of molecular hydrogen, and the two groups of rats, injected with monocrotaline or vehicle, were placed in boxes ventilated with atmospheric air. After 21 days, hemodynamic parameters were measured under urethane narcosis. The results showed that, although hydrogen inhalation had no effect on the main markers of pulmonary hypertension induced by monocrotaline injection, there was a reduction in systemic blood pressure due to its systolic component, and a decrease in TGF-β expression, as well as a reduction in tryptase-containing mast cells.
Collapse
Affiliation(s)
- Tatyana Kuropatkina
- Department of Pharmacology, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia; (T.K.); (M.A.); (K.G.)
| | - Dmitrii Atiakshin
- Research Institute of Experimental Biology and Medicine, N.N. Burdenko Voronezh State Medical University, Moskovsky Prispect, 185, 394066 Voronezh, Russia; (D.A.); (T.S.); (O.G.)
- Research and Educational Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, People’s Frendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Fedor Sychev
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (F.S.); (N.M.)
| | - Marina Artemieva
- Department of Pharmacology, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia; (T.K.); (M.A.); (K.G.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (F.S.); (N.M.)
| | - Tatyana Samoilenko
- Research Institute of Experimental Biology and Medicine, N.N. Burdenko Voronezh State Medical University, Moskovsky Prispect, 185, 394066 Voronezh, Russia; (D.A.); (T.S.); (O.G.)
| | - Olga Gerasimova
- Research Institute of Experimental Biology and Medicine, N.N. Burdenko Voronezh State Medical University, Moskovsky Prispect, 185, 394066 Voronezh, Russia; (D.A.); (T.S.); (O.G.)
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, N.N. Burdenko Voronezh State Medical University, Moskovsky Prispect, 185, 394066 Voronezh, Russia; (D.A.); (T.S.); (O.G.)
| | - Khaydar Gufranov
- Department of Pharmacology, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia; (T.K.); (M.A.); (K.G.)
| | - Natalia Medvedeva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (F.S.); (N.M.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA;
- Molecular Hydrogen Institute, Cedar City, UT 84720, USA
| | - Oleg Medvedev
- Department of Pharmacology, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia; (T.K.); (M.A.); (K.G.)
- Laboratory of Experimental Pharmacology, National Medical Research Center of Cardiology Named after Accademician Chazov E.I., Akademika Chazova St. 15a, 121552 Moscow, Russia
| |
Collapse
|
12
|
Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A. Mitochondrial Integrity Is Critical in Right Heart Failure Development. Int J Mol Sci 2023; 24:11108. [PMID: 37446287 PMCID: PMC10342493 DOI: 10.3390/ijms241311108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular processes underlying right ventricular (RV) dysfunction (RVD) and right heart failure (RHF) need to be understood to develop tailored therapies for the abatement of mortality of a growing patient population. Today, the armament to combat RHF is poor, despite the advancing identification of pathomechanistic processes. Mitochondrial dysfunction implying diminished energy yield, the enhanced release of reactive oxygen species, and inefficient substrate metabolism emerges as a potentially significant cardiomyocyte subcellular protagonist in RHF development. Dependent on the course of the disease, mitochondrial biogenesis, substrate utilization, redox balance, and oxidative phosphorylation are affected. The objective of this review is to comprehensively analyze the current knowledge on mitochondrial dysregulation in preclinical and clinical RVD and RHF and to decipher the relationship between mitochondrial processes and the functional aspects of the right ventricle (RV).
Collapse
Affiliation(s)
- Marion Müller
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Elfi Donhauser
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Tibor Maske
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Cornelius Bischof
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Volker Rudolph
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
13
|
Han QJ, Forfia P, Vaidya A, Ramani G, deKemp RA, Mach RH, Mankoff DA, Bravo PE, DiCarli M, Chan SY, Waxman AB, Han Y. Effects of ranolazine on right ventricular function, fluid dynamics, and metabolism in patients with precapillary pulmonary hypertension: insights from a longitudinal, randomized, double-blinded, placebo controlled, multicenter study. Front Cardiovasc Med 2023; 10:1118796. [PMID: 37383703 PMCID: PMC10293744 DOI: 10.3389/fcvm.2023.1118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Right ventricular (RV) function is a major determinant of outcome in patients with precapillary pulmonary hypertension (PH). We studied the effect of ranolazine on RV function over 6 months using multi-modality imaging and biochemical markers in patients with precapillary PH (groups I, III, and IV) and RV dysfunction [CMR imaging ejection fraction (EF) < 45%] in a longitudinal, randomized, double-blinded, placebo-controlled, multicenter study of ranolazine treatment. Methods Enrolled patients were assessed using cardiac magnetic resonance (CMR) imaging, 11C-acetate and 18-F-FDG positron emission tomography (PET), and plasma metabolomic profiling, at baseline and at the end of treatment. Results Twenty-two patients were enrolled, and 15 patients completed all follow-up studies with 9 in the ranolazine arm and 6 in the placebo arm. RVEF and RV/Left ventricle (LV) mean glucose uptake were significantly improved after 6 months of treatment in the ranolazine arm. Metabolomic changes in aromatic amino acid metabolism, redox homeostasis, and bile acid metabolism were observed after ranolazine treatment, and several changes significantly correlated with changes in PET and CMR-derived fluid dynamic measurements. Discussion Ranolazine may improve RV function by altering RV metabolism in patients with precapillary PH. Larger studies are needed to confirm the beneficial effects of ranolazine.
Collapse
Affiliation(s)
- Q. Joyce Han
- Cardiovascular Division, Massachusetts General Hospital, Boston, MA, United States
| | - Paul Forfia
- Pulmonary Hypertension, Right Heart Failure, and CTEPH Program, Department of Cardiology, Temple University Hospital, Philadelphia, PA, United States
| | - Anjali Vaidya
- Pulmonary Hypertension, Right Heart Failure, and CTEPH Program, Department of Cardiology, Temple University Hospital, Philadelphia, PA, United States
| | - Gautam Ramani
- Cardiovascular Division, University of Maryland, Baltimore, MD, United States
| | - Robert A. deKemp
- Cardiac PET Center, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paco E. Bravo
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Cardiovascular Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Marcelo DiCarli
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aaron B. Waxman
- Center for Pulmonary Heart Disease, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Yuchi Han
- Cardiovascular Division, University of Pennsylvania, Philadelphia, PA, United States
- Cardiovascular Division, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Poyatos P, Gratacós M, Samuel K, Orriols R, Tura-Ceide O. Oxidative Stress and Antioxidant Therapy in Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:1006. [PMID: 37237872 PMCID: PMC10215203 DOI: 10.3390/antiox12051006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated artery pressures and pulmonary vascular resistance. Underlying mechanisms comprise endothelial dysfunction, pulmonary artery remodeling and vasoconstriction. Several studies have shown evidence of the critical role of oxidative stress in PH pathophysiology. Alteration of redox homeostasis produces excessive generation of reactive oxygen species, inducing oxidative stress and the subsequent alteration of biological molecules. Exacerbations in oxidative stress production can lead to alterations in nitric oxide signaling pathways, contributing to the proliferation of pulmonary arterial endothelial cells and smooth muscle cells, inducing PH development. Recently, antioxidant therapy has been suggested as a novel therapeutic strategy for PH pathology. However, the favorable outcomes observed in preclinical studies have not been consistently reproduced in clinical practice. Therefore, targeting oxidative stress as a therapeutic intervention for PH is an area that is still being explored. This review summarizes the contribution of oxidative stress to the pathogenesis of the different types of PH and suggests antioxidant therapy as a promising strategy for PH treatment.
Collapse
Affiliation(s)
- Paula Poyatos
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| | - Miquel Gratacós
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
| | - Kay Samuel
- Scottish National Blood Transfusion Service, NHS National Services Scotland, Edinburgh EH14 4BE, UK
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
15
|
Ng ML, Ang X, Yap KY, Ng JJ, Goh ECH, Khoo BBJ, Richards AM, Drum CL. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023; 11:917. [PMID: 36979896 PMCID: PMC10046491 DOI: 10.3390/biomedicines11030917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress (OS) is mediated by reactive oxygen species (ROS), which in cardiovascular and other disease states, damage DNA, lipids, proteins, other cellular and extra-cellular components. OS is both initiated by, and triggers inflammation, cardiomyocyte apoptosis, matrix remodeling, myocardial fibrosis, and neurohumoral activation. These have been linked to the development of heart failure (HF). Circulating biomarkers generated by OS offer potential utility in patient management and therapeutic targeting. Novel OS-related biomarkers such as NADPH oxidases (sNox2-dp, Nrf2), advanced glycation end-products (AGE), and myeloperoxidase (MPO), are signaling molecules reflecting pathobiological changes in HF. This review aims to evaluate current OS-related biomarkers and their associations with clinical outcomes and to highlight those with greatest promise in diagnosis, risk stratification and therapeutic targeting in HF.
Collapse
Affiliation(s)
- Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xu Ang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwan Yi Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Jun Jie Ng
- Vascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Eugene Chen Howe Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Benjamin Bing Jie Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, NUHCS, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
16
|
Wang D, Ji Y, Wang R, Cheng K, Liu L, Wu N, Tang Q, Zheng X, Li J, Zhu Z, Wang Q, Zhang X, Li R, Pan J, Sui Z, Yuan Y. Lycopene Ameliorates Hypoxic Pulmonary Hypertension via Suppression of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9179427. [PMID: 39282152 PMCID: PMC11401662 DOI: 10.1155/2022/9179427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 09/18/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a progressive cardiopulmonary system disease characterized by pulmonary vascular remodeling. Its occurrence and progression are closely related to oxidative stress. Lycopene, extracted from red vegetables and fruits, exhibits a particularly high antioxidant capacity that is beneficial for cardiovascular diseases. Nevertheless, the role and mechanism of lycopene in HPH remain unknown. Here, we found that lycopene reversed the elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling induced by hypoxia in rats. In vitro, lycopene caused lower proliferation and migration of PASMCs, with higher apoptosis. Consistent with the antiproliferative result of lycopene on hypoxic PASMCs, the hippo signaling pathway associated with cell growth was activated. Furthermore, lycopene reduced malondialdehyde (MDA) levels and enhanced superoxide dismutase (SOD) activity in the lungs and serum of rats under hypoxia conditions. The expression of NOX4 in the lungs was also significantly decreased. Hypoxic PASMCs subjected to lycopene showed decreased reactive oxygen species (ROS) production and NOX4 expression. Importantly, lycopene repressed HIF-1α expression both in the lungs and PASMCs in response to hypoxia in the absence of a significant change of HIF-1α mRNA. Compared with 2ME2 (a HIF-1α inhibitor) alone treatment, lycopene treatment did not significantly change PASMC proliferation, NOX4 expression, and ROS production after 2ME2 blocked HIF-1α, suggesting the inhibitory effect of lycopene on HIF-1α-NOX4-ROS axis and the targeted effect on HIF-1α. After CHX blocked protein synthesis, lycopene promoted the protein degradation of HIF-1α. MG-132, a proteasome inhibitor, notably reversed the decrease in HIF-1α protein level induced by lycopene in response to hypoxia. Therefore, lycopene suppressed hypoxia-induced oxidative stress through HIF-1α-NOX4-ROS axis, thereby alleviating HPH. Our findings will provide a new research direction for clinical HPH therapies.
Collapse
Affiliation(s)
- Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Xu Zheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Junxia Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Zhilong Zhu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Qinghua Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Xueyan Zhang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Runbo Li
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Zheng Sui
- Department of Vasculocardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
17
|
Allopurinol treatment reduced vascular remodeling and improved vascular functions in monocrotaline-induced pulmonary hypertensive rats. Pulm Pharmacol Ther 2022; 77:102166. [PMID: 36165827 DOI: 10.1016/j.pupt.2022.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Increased oxidative stress and high uric acid are implicated in the pathogenesis of pulmonary hypertension (PH). This provides opportunity to benefit from drugs like allopurinol which suppresses both contributing factors. Therefore, we aimed to investigate the effects of allopurinol in preventing as well as reversing the pathological changes occurring in monocrotaline (MCT)-induced rat model of PH. Male rats were assigned into three groups based on the follow-up time: 7, 21 and 35 days. Time-matched controls of each group received single injections of MCT (60 mg/kg) intraperitoneally. Test groups consisted of rats who were treated with MCT on day 0 plus oral allopurinol (60 mg/kg) daily for 7 or 21 days. 35-day group received allopurinol for two weeks starting on the 22nd day following MCT injection. At the end of all-time points, rats were killed and basal pulmonary perfusion pressure, Fulton index, pulmonary arterial wall thickness and pulmonary arterial relaxations along with oxidative stress markers (MDA, SOD, XO), NO and uric acid levels were measured in all groups. MCT-injected rats had evidence of raised oxidative stress (high MDA and XO, low SOD levels) which was reversed by allopurinol co-treatment in all-time groups. Marked elevation of uric acid seen in 21- and 35 day-groups was also reversed by allopurinol. Reduced NO levels of 21 and 35 days were unchanged in allopurinol treated groups. Apart from an increase in arterial wall thickening which was maintained in all-time groups, no alterations in other cardiovascular parameters were observed in 7-day group. However, basal lung perfusion pressure and Fulton index significantly increased, while arterial relaxations decreased in 21- and 35-day groups. Co-treatment with allopurinol for 21 days improved these functional alterations, whereas late allopurinol treatment failed to affect them. Our results indicate that early treatment of MCT-induced PH with allopurinol ameliorated the impaired functional characteristics via suppressing the increased oxidative stress and uric acid, while treatment started after progression of the disease had no significant effect.
Collapse
|
18
|
Bouchet C, Cardouat G, Douard M, Coste F, Robillard P, Delcambre F, Ducret T, Quignard JF, Vacher P, Baudrimont I, Marthan R, Berger P, Guibert C, Freund-Michel V. Inflammation and Oxidative Stress Induce NGF Secretion by Pulmonary Arterial Cells through a TGF-β1-Dependent Mechanism. Cells 2022; 11:cells11182795. [PMID: 36139373 PMCID: PMC9496672 DOI: 10.3390/cells11182795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Expression of the nerve growth factor NGF is increased in pulmonary hypertension (PH). We have here studied whether oxidative stress and inflammation, two pathological conditions associated with transforming growth factor-β1 (TGF-β1) in PH, may trigger NGF secretion by pulmonary arterial (PA) cells. Effects of hydrogen peroxide (H2O2) and interleukin-1β (IL-1β) were investigated ex vivo on rat pulmonary arteries, as well as in vitro on human PA smooth muscle (hPASMC) or endothelial cells (hPAEC). TβRI expression was assessed by Western blotting. NGF PA secretion was assessed by ELISA after TGF-β1 blockade (anti-TGF-β1 siRNA, TGF-β1 blocking antibodies, TβRI kinase, p38 or Smad3 inhibitors). TβRI PA expression was evidenced by Western blotting both ex vivo and in vitro. H2O2 or IL-1β significantly increased NGF secretion by hPASMC and hPAEC, and this effect was significantly reduced when blocking TGF-β1 expression, binding to TβRI, TβRI activity, or signaling pathways. In conclusion, oxidative stress and inflammation may trigger TGF-β1 secretion by hPASMC and hPAEC. TGF-β1 may then act as an autocrine factor on these cells, increasing NGF secretion via TβRI activation. Since NGF and TGF-β1 are relevant growth factors involved in PA remodeling, such mechanisms may therefore be relevant to PH pathophysiology.
Collapse
Affiliation(s)
- Clément Bouchet
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Matthieu Douard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- IHU Institut de Rythmologie et Modélisation Cardiaque (LIRYC), 33600 Pessac, France
| | - Florence Coste
- Laboratoire de Pharm-Écologie Cardiovasculaire (LaPEC-EA 4278), Université d’Avignon et des Pays du Vaucluse, 84000 Avignon, France
| | - Paul Robillard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | | | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- CHU de Bordeaux, 33000 Bordeaux, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- CHU de Bordeaux, 33000 Bordeaux, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, U1045, 33600 Pessac, France
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
19
|
Wang RR, Yuan TY, Chen D, Chen YC, Sun SC, Wang SB, Kong LL, Fang LH, Du GH. Dan-Shen-Yin Granules Prevent Hypoxia-Induced Pulmonary Hypertension via STAT3/HIF-1α/VEGF and FAK/AKT Signaling Pathways. Front Pharmacol 2022; 13:844400. [PMID: 35479305 PMCID: PMC9035666 DOI: 10.3389/fphar.2022.844400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the treatment of complex diseases, especially cardiovascular diseases. However, it is hard to identify their modes of action on account of their multiple components. The present study aims to evaluate the effects of Dan-Shen-Yin (DSY) granules on hypoxia-induced pulmonary hypertension (HPH), and then to decipher the molecular mechanisms of DSY. Systematic pharmacology was employed to identify the targets of DSY on HPH. Furthermore, core genes were identified by constructing a protein-protein interaction (PPI) network and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis. Related genes and pathways were verified using a hypoxia-induced mouse model and hypoxia-treated pulmonary artery cells. Based on network pharmacology, 147 potential targets of DSY on HPH were found, constructing a PPI network, and 13 hub genes were predicted. The results showed that the effect of DSY may be closely associated with AKT serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription 3 (STAT3), and HIF-1 signaling pathways, as well as biological processes such as cell proliferation. Consistent with network pharmacology analysis, experiments in vivo demonstrated that DSY could prevent the development of HPH in a hypoxia-induced mouse model and alleviate pulmonary vascular remodeling. In addition, inhibition of STAT3/HIF-1α/VEGF and FAK/AKT signaling pathways might serve as mechanisms. Taken together, the network pharmacology analysis suggested that DSY exhibited therapeutic effects through multiple targets in the treatment of HPH. The inferences were initially confirmed by subsequent in vivo and in vitro studies. This study provides a novel perspective for studying the relevance of TCM and disease processes and illustrates the advantage of this approach and the multitargeted anti-HPH effect of DSY.
Collapse
Affiliation(s)
- Ran-Ran Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Chan Sun
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Lei Kong
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Türck P, Salvador IS, Campos-Carraro C, Ortiz V, Bahr A, Andrades M, Belló-Klein A, da Rosa Araujo AS. Blueberry extract improves redox balance and functional parameters in the right ventricle from rats with pulmonary arterial hypertension. Eur J Nutr 2022; 61:373-386. [PMID: 34374852 DOI: 10.1007/s00394-021-02642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH's pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH's animal model. METHODS Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses. RESULTS RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity. CONCLUSION Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Isadora Schein Salvador
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vanessa Ortiz
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alan Bahr
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael Andrades
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Zhai C, Li Puma LC, Chicco AJ, Omar A, Delmore RJ, Geornaras I, Speidel SE, Holt TN, Thomas MG, Mark Enns R, Nair MN. Pulmonary arterial pressure in fattened Angus steers at moderate altitude influences early postmortem mitochondria functionality and meat color during retail display. J Anim Sci 2022; 100:6500124. [PMID: 35015873 PMCID: PMC8846331 DOI: 10.1093/jas/skac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary hypertension is a noninfectious disease of cattle at altitudes > 1524 m (5,000 ft). Mean pulmonary arterial pressures (PAP) are used as an indicator for pulmonary hypertension in cattle. High PAP cattle (≥50 mmHg) entering the feedlot at moderate elevations have lower feed efficiency as compared to low PAP cattle (< 50 mmHg). The impact of pulmonary arterial pressure on mitochondrial function, oxidative phosphorylation (OXPHOS) protein abundance, and meat color was examined using longissimus lumborum (LL) from high (98 ± 13 mmHg; n = 5) and low (41 ± 3 mmHg; n = 6) PAP fattened Angus steers (live weight of 588 ± 38 kg) during early postmortem period (2 and 48 h) and retail display (days 1 to 9), respectively. High PAP muscle had greater (P = 0.013) OXPHOS-linked respiration and proton leak-associated respiration than low PAP muscles at 2 h postmortem but rapidly declined to be similar (P = 0.145) to low PAP muscle by 48 h postmortem. OXPHOS protein expression was higher (P = 0.045) in low PAP than high PAP muscle. During retail display, redness, chroma, hue, ratio of reflectance at 630 and 580 nm, and metmyoglobin reducing activity decreased faster (P < 0.05) in high PAP steaks than low PAP. Lipid oxidation significantly increased (P < 0.05) in high PAP steaks but not (P > 0.05) in low PAP. The results indicated that high PAP caused a lower OXPHOS efficiency and greater fuel oxidation rates under conditions of low ATP demand in premortem beef LL muscle; this could explain the lower feed efficiency in high PAP feedlot cattle compared to low PAP counterparts. Mitochondrial integral function (membrane integrity or/and protein function) declined faster in high PAP than low PAP muscle at early postmortem. LL steaks from high PAP animals had lower color stability than those from the low PAP animals during simulated retail display, which could be partially attributed to the loss of muscle mitochondrial function at early postmortem by ROS damage in high PAP muscle.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Asma Omar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert J Delmore
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ifigenia Geornaras
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tim N Holt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Milton G Thomas
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - R Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA,Corresponding author:
| |
Collapse
|
22
|
Liang B, Li R, Liang Y, Gu N. Guanxin V Acts as an Antioxidant in Ventricular Remodeling. Front Cardiovasc Med 2022; 8:778005. [PMID: 35059446 PMCID: PMC8764413 DOI: 10.3389/fcvm.2021.778005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Our previous studies have shown that Guanxin V (GXV) is safe and effective in the treatment of ventricular remodeling (VR), but its mechanism related to oxidative stress has not been studied deeply. Methods: We applied integrating virtual screening and network pharmacology strategy to obtain the GXV-, VR-, and oxidative stress-related targets at first, and then highlighted the shared targets. We built the networks and conducted enrichment analysis. Finally, the main results were validated by molecular docking and solid experiments. Results: We obtained 251, 11,425, and 9,727 GXV-, VR-, and oxidative stress-related targets, respectively. GXV-component-target-VR and protein-protein interaction networks showed the potential mechanism of GXV in the treatment of VR. The following enrichment analysis results gathered many biological processes and "two GXV pathways" of oxidative stress-related to VR. All our main results were validated by molecular docking and solid experiments. Conclusion: GXV could be prescribed for VR through the mechanism, including complex interactions between related components and targets, as predicted by virtual screening and network pharmacology and validated by molecular docking and solid experiments. Our study promotes the explanation of the biological mechanism of GXV for VR.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Liang
- Southwest Medical University, Luzhou, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Zimmer A, Teixeira RB, Constantin RL, Fernandes-Piedras TRG, Campos-Carraro C, Türck P, Visioli F, Baldo G, Schenkel PC, Araujo AS, Belló-Klein A. Thioredoxin system activation is associated with the progression of experimental pulmonary arterial hypertension. Life Sci 2021; 284:119917. [PMID: 34478759 DOI: 10.1016/j.lfs.2021.119917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosalia Lempk Constantin
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tânia Regina Gatelli Fernandes-Piedras
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrick Türck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Laboratory of Oral Pathology, Post-Graduation Program in Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Guilherme Baldo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Department of Physiology and Pharmacology, Biology Institute, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil.
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
24
|
Siques P, Pena E, Brito J, El Alam S. Oxidative Stress, Kinase Activation, and Inflammatory Pathways Involved in Effects on Smooth Muscle Cells During Pulmonary Artery Hypertension Under Hypobaric Hypoxia Exposure. Front Physiol 2021; 12:690341. [PMID: 34434114 PMCID: PMC8381601 DOI: 10.3389/fphys.2021.690341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
High-altitude exposure results in hypobaric hypoxia, which affects organisms by activating several mechanisms at the physiological, cellular, and molecular levels and triggering the development of several pathologies. One such pathology is high-altitude pulmonary hypertension (HAPH), which is initiated through hypoxic pulmonary vasoconstriction to distribute blood to more adequately ventilated areas of the lungs. Importantly, all layers of the pulmonary artery (adventitia, smooth muscle, and endothelium) contribute to or are involved in the development of HAPH. However, the principal action sites of HAPH are pulmonary artery smooth muscle cells (PASMCs), which interact with several extracellular and intracellular molecules and participate in mechanisms leading to proliferation, apoptosis, and fibrosis. This review summarizes the alterations in molecular pathways related to oxidative stress, inflammation, kinase activation, and other processes that occur in PASMCs during pulmonary hypertension under hypobaric hypoxia and proposes updates to pharmacological treatments to mitigate the pathological changes in PASMCs under such conditions. In general, PASMCs exposed to hypobaric hypoxia undergo oxidative stress mediated by Nox4, inflammation mediated by increases in interleukin-6 levels and inflammatory cell infiltration, and activation of the protein kinase ERK1/2, which lead to the proliferation of PASMCs and contribute to the development of hypobaric hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Patricia Siques
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| | - Eduardo Pena
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| | - Julio Brito
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| | - Samia El Alam
- Institute of Health Studies, Arturo Prat University, Iquique, Chile
| |
Collapse
|
25
|
Nitrite and tempol combination promotes synergic effects and alleviates right ventricular wall stress during acute pulmonary thromboembolism. Nitric Oxide 2021; 115:23-29. [PMID: 34133975 DOI: 10.1016/j.niox.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The mechanical obstruction and pulmonary vasoconstriction are major determinants of the sudden right ventricular (RV) afterload increases observed during acute pulmonary thromboembolism (APT). Vasodilators and antioxidants agents have been shown to mitigate pulmonary hypertension. We examined whether sodium nitrite and the antioxidant tempol combination could be advantageous in an APT sheep model. METHODS APT was induced in anesthetized sheep by autologous blood clots (250 mg/kg) into the right atrium. Thirty minutes after APT induction, the animals received a continuous infusion of tempol (1.0 mg/kg/min), increasing sodium nitrite infusion (5, 15, and 50 μmol/kg), or a simultaneous combination of both drugs. Saline was used as a control treatment. Hemodynamic measurements were carried out every 15 min. Also, whole blood nitrite and serum 8-isoprostanes levels were measured. RESULTS APT induced sustained pulmonary hypertension, increased dp/dtmax, and rate pressure product (RPP). Nitrite or tempol treatments attenuated these increases (P < 0.05). When both drugs were combined, we found a robust reduction in the RV RPP compared with the treatments alone (P < 0.05). The sole nitrite infusion increased blood nitrite concentrations by 35 ± 6 μM (P < 0.05), whereas the nitrite and tempol combination produced higher blood nitrite concentrations by approximately 54 ± 7 μM. Tempol or nitrite infusions, both alone or combined, blunted the increases in 8-isoprostane concentrations observed after APT. CONCLUSIONS Nitrite and tempol combination protects against APT-induced RV wall stress. The association of both drugs may offer an advantage to treat RV failure during severe APT.
Collapse
|
26
|
Yang X, Zhang L, Ye JQ, Wu XH, Zeng XX, Chen LW, Li YM. The role of ATG-7 contributes to pulmonary hypertension by impacting vascular remodeling. J Mol Cell Cardiol 2021; 157:1-13. [PMID: 33819456 DOI: 10.1016/j.yjmcc.2021.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Pulmonary hypertension (PH) is a pathophysiological syndrome with functional abnormalities of the pulmonary artery and heart, eventually becoming life threatening to the patients. Autophagy-related gene 7 (ATG)-7 is involved in many cardiovascular diseases, but little is known about the specific role of ATG-7 in the development of PH. We aimed to examine the expression of ATG-7 in PH patients and PH mice, specifically investigate pulmonary physiological responses in a mouse model with conditional deletion of ATG-7 in smooth muscle cells (SMCs) and further clarify the mechanism of PH caused by ATG-7 deficiency. METHODS AND RESULTS SMC-ATG-7-/- mice underwent echocardiography and subsequent pulmonary arterial pressure (PAP) checks. The PAP was lower in wild-type (WT) mice (22.6 ± 2.0 mmHg) than knockout (KO) mice (34.0 ± 2.5 mmHg; p < 0.001). Pulmonary artery resistance was increased in KO (17.61 ± 2.03 mm2·s-1) versus WT mice (8.91 ± 1.62 mm2·s-1; p < 0.005). Combined with these statistics, SMC-ATG7-/- mice were diagnosed with PH. The increase of ATG-7 expression in vessels from PH patients and PH mice were assessed and the effects of ATG-7 on vascular remodeling were investigated in SMCs using relevant methods. We also identified silencing ATG-7 in SMCs induced the increased level of Ca2+ and abnormal proliferation through PP2A/ 4EBP-1/ elf-4E pathway. CONCLUSIONS ATG-7 affects vascular remodeling and exerts a protective function during the pathogenesis of PH. Our study revealed a novel mechanism ATG-7 deficiency promotes cell proliferation via the interaction between PP2A, 4EBP-1 and elf-4E.
Collapse
Affiliation(s)
- Xi Yang
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jian-Qiang Ye
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xiao-Hui Wu
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Xi-Xi Zeng
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liang-Wan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yu-Mei Li
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Toxicology, Fujian Center for Evaluation of New Drug, Fujian Medical University, Fuzhou, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
27
|
Hwang HV, Sandeep N, Nair RV, Hu D, Zhao M, Lan IS, Fajardo G, Matkovich SJ, Bernstein D, Reddy S. Transcriptomic and Functional Analyses of Mitochondrial Dysfunction in Pressure Overload-Induced Right Ventricular Failure. J Am Heart Assoc 2021; 10:e017835. [PMID: 33522250 PMCID: PMC7955345 DOI: 10.1161/jaha.120.017835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
Background In complex congenital heart disease patients such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload, leading to RV hypertrophy and eventually RV failure. The mechanisms that promote the transition from stable RV hypertrophy to RV failure are unknown. We evaluated the role of mitochondrial bioenergetics in the development of RV failure. Methods and Results We created a murine model of RV pressure overload by pulmonary artery banding and compared with sham-operated controls. Gene expression by RNA-sequencing, oxidative stress, mitochondrial respiration, dynamics, and structure were assessed in pressure overload-induced RV failure. RV failure was characterized by decreased expression of electron transport chain genes and mitochondrial antioxidant genes (aldehyde dehydrogenase 2 and superoxide dismutase 2) and increased expression of oxidant stress markers (heme oxygenase, 4-hydroxynonenal). The activities of all electron transport chain complexes decreased with RV hypertrophy and further with RV failure (oxidative phosphorylation: sham 552.3±43.07 versus RV hypertrophy 334.3±30.65 versus RV failure 165.4±36.72 pmol/(s×mL), P<0.0001). Mitochondrial fission protein DRP1 (dynamin 1-like) trended toward an increase, while MFF (mitochondrial fission factor) decreased and fusion protein OPA1 (mitochondrial dynamin like GTPase) decreased. In contrast, transcription of electron transport chain genes increased in the left ventricle of RV failure. Conclusions Pressure overload-induced RV failure is characterized by decreased transcription and activity of electron transport chain complexes and increased oxidative stress which are associated with decreased energy generation. An improved understanding of the complex processes of energy generation could aid in developing novel therapies to mitigate mitochondrial dysfunction and delay the onset of RV failure.
Collapse
Affiliation(s)
- HyunTae V. Hwang
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| | - Nefthi Sandeep
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| | - Ramesh V. Nair
- Stanford Center for Genomics and Personalized MedicinePalo AltoCA
| | - Dong‐Qing Hu
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| | - Mingming Zhao
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| | - Ingrid S. Lan
- Department of BioengineeringStanford UniversityPalo AltoCA
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| | - Scot J. Matkovich
- Department of Internal MedicineCenter for PharmacogenomicsWashington University School of MedicineSt. LouisMO
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology)Stanford UniversityPalo AltoCA
| |
Collapse
|
28
|
Liu Y, Nie X, Zhu J, Wang T, Li Y, Wang Q, Sun Z. NDUFA4L2 in smooth muscle promotes vascular remodeling in hypoxic pulmonary arterial hypertension. J Cell Mol Med 2021; 25:1221-1237. [PMID: 33340241 PMCID: PMC7812284 DOI: 10.1111/jcmm.16193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and obliterative pulmonary vascular remodelling (PVR). The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important cause of PVR leading to PAH. Mitochondria play a key role in the production of hypoxia-induced pulmonary hypertension (HPH). However, there are still many issues worth studying in depth. In this study, we demonstrated that NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 like 2 (NDUFA4L2) was a proliferation factor and increased in vivo and in vitro through various molecular biology experiments. HIF-1α was an upstream target of NDUFA4L2. The plasma levels of 4-hydroxynonene (4-HNE) were increased both in PAH patients and hypoxic PAH model rats. Knockdown of NDUFA4L2 decreased the levels of malondialdehyde (MDA) and 4-HNE in human PASMCs in hypoxia. Elevated MDA and 4-HNE levels might be associated with excessive ROS generation and increased expression of 5-lipoxygenase (5-LO) in hypoxia, but this effect was blocked by siNDUFA4L2. Further research found that p38-5-LO was a downstream signalling pathway of PASMCs proliferation induced by NDUFA4L2. Up-regulated NDUFA4L2 plays a critical role in the development of HPH, which mediates ROS production and proliferation of PASMCs, suggesting NDUFA4L2 as a potential new therapeutic target for PAH.
Collapse
MESH Headings
- Aldehydes/metabolism
- Animals
- Arachidonate 5-Lipoxygenase/metabolism
- Cell Hypoxia
- Cell Proliferation
- Disease Models, Animal
- Electron Transport Complex I/genetics
- Electron Transport Complex I/metabolism
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Gene Silencing
- Humans
- Hypoxia/complications
- Hypoxia/physiopathology
- Male
- Malondialdehyde/metabolism
- Models, Biological
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidation-Reduction
- Oxygen Consumption
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Artery/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Vascular Remodeling/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiaowei Nie
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinquan Zhu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Tianyan Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanli Li
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zengxian Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
29
|
Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, Xue L, Xiong C. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother 2020; 129:110355. [DOI: 10.1016/j.biopha.2020.110355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
|
30
|
Abstract
Right-sided heart failure (RHF) occurs from impaired contractility of the right ventricle caused by pressure, volume overload, or intrinsic myocardial contractile dysfunction. The development of subclinical right ventricle (RV) dysfunction or overt RHF is a negative prognostic indicator. Recent attention has focused on RV-specific inflammatory growth factors and mediators of myocardial fibrosis to elucidate the mechanisms leading to RHF and potentially guide the development of novel therapeutics. This article focuses on the distinct changes in RV structure, mechanics, and function, as well as molecular and inflammatory mediators involved in the pathophysiology of acute and chronic RHF.
Collapse
Affiliation(s)
| | - Kalyan R Chitturi
- Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin Street, Houston, TX 77030, USA
| | - Ashrith Guha
- Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Rajendram R, Patel VB, Preedy VR. Recommended resources for pathology: oxidative stress and dietary antioxidants. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|