1
|
Chinnappa S, Maqbool A, Viswambharan H, Mooney A, Denby L, Drinkhill M. Beta Blockade Prevents Cardiac Morphological and Molecular Remodelling in Experimental Uremia. Int J Mol Sci 2023; 25:373. [PMID: 38203544 PMCID: PMC10778728 DOI: 10.3390/ijms25010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Heart failure and chronic kidney disease (CKD) share several mediators of cardiac pathological remodelling. Akin to heart failure, this remodelling sets in motion a vicious cycle of progressive pathological hypertrophy and myocardial dysfunction in CKD. Several decades of heart failure research have shown that beta blockade is a powerful tool in preventing cardiac remodelling and breaking this vicious cycle. This phenomenon remains hitherto untested in CKD. Therefore, we set out to test the hypothesis that beta blockade prevents cardiac pathological remodelling in experimental uremia. Wistar rats had subtotal nephrectomy or sham surgery and were followed up for 10 weeks. The animals were randomly allocated to the beta blocker metoprolol (10 mg/kg/day) or vehicle. In vivo and in vitro cardiac assessments were performed. Cardiac tissue was extracted, and protein expression was quantified using immunoblotting. Histological analyses were performed to quantify myocardial fibrosis. Beta blockade attenuated cardiac pathological remodelling in nephrectomised animals. The echocardiographic left ventricular mass and the heart weight to tibial length ratio were significantly lower in nephrectomised animals treated with metoprolol. Furthermore, beta blockade attenuated myocardial fibrosis associated with subtotal nephrectomy. In addition, the Ca++- calmodulin-dependent kinase II (CAMKII) pathway was shown to be activated in uremia and attenuated by beta blockade, offering a potential mechanism of action. In conclusion, beta blockade attenuated hypertrophic signalling pathways and ameliorated cardiac pathological remodelling in experimental uremia. The study provides a strong scientific rationale for repurposing beta blockers, a tried and tested treatment in heart failure, for the benefit of patients with CKD.
Collapse
Affiliation(s)
- Shanmugakumar Chinnappa
- Department of Nephrology, Doncaster and Bassetlaw Teaching Hospitals NHS Trust, Doncaster DN2 5LT, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| | - Andrew Mooney
- Department of Nephrology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK;
| | - Laura Denby
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Mark Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (A.M.); (H.V.)
| |
Collapse
|
2
|
Soppert J, Heussen NM, Noels H. The authors reply. Kidney Int 2023; 103:1199-1201. [PMID: 37210195 DOI: 10.1016/j.kint.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicole Maria Heussen
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany; Center of Biostatistics and Epidemiology, Medical School, Sigmund Freud University, Vienna, Austria
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Shinozaki Y, Fukui K, Maekawa M, Toyoda K, Yoshiuchi H, Inagaki K, Uno K, Miyajima K, Ohta T. Unilateral nephrectomized SHR/NDmcr-cp rat shows a progressive decline of glomerular filtration with tubular interstitial lesions. Physiol Res 2023; 72:209-220. [PMID: 37159855 PMCID: PMC10226397 DOI: 10.33549/physiolres.934969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 10/01/2024] Open
Abstract
In patients with diabetic kidney disease (DKD), the estimated glomerular filtration rate (eGFR) or creatinine clearance rate (Ccr) is always used as an index of decline in renal function. However, there are few animal models of DKD that could be used to evaluate renal function based on GFR or Ccr. For this reason, it is desirable to develop animal models to assess renal function, which could also be used for the evaluation of novel therapeutic agents for DKD. Therefore, we aimed to develop such animal model of DKD by using spontaneously hypertensive rat (SHR)/NDmcr-cp (cp/cp) rats with the characteristics of obese type 2 diabetes and metabolic syndrome. As a result, we have found that unilateral nephrectomy (UNx) caused a chronic Ccr decline, development of glomerular sclerosis, tubular lesions, and tubulointerstitial fibrosis, accompanied by renal anemia. Moreover, losartan-mixed diet suppressed the Ccr decline in UNx-performed SHR/NDmcr-cp rats (UNx-SHR/cp rats), with improvement in renal anemia and histopathological changes. These results suggest that UNx-SHR/cp rats could be used as a DKD model for evaluating the efficacy of therapeutic agents based on suppression of renal function decline.
Collapse
Affiliation(s)
- Y Shinozaki
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Loughlin S, Costello HM, Roe AJ, Buckley C, Wilson SM, Bailey MA, Mansley MK. Mapping the Transcriptome Underpinning Acute Corticosteroid Action within the Cortical Collecting Duct. KIDNEY360 2023; 4:226-240. [PMID: 36821614 PMCID: PMC10103384 DOI: 10.34067/kid.0003582022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Key Points We report the transcriptomes associated with acute corticosteroid regulation of ENaC activity in polarized mCCDcl1 collecting duct cells. Nine genes were regulated by aldosterone (ALDO), 0 with corticosterone alone, and 151 with corticosterone when 11βHSD2 activity was inhibited. We validated three novel ALDO-induced genes, Rasd1 , Sult1d1 , and Gm43305 , in primary cells isolated from a novel principal cell reporter mouse. Background Corticosteroids regulate distal nephron and collecting duct (CD) Na+ reabsorption, contributing to fluid-volume and blood pressure homeostasis. The transcriptional landscape underpinning the acute stimulation of the epithelial sodium channel (ENaC) by physiological concentrations of corticosteroids remains unclear. Methods Transcriptomic profiles underlying corticosteroid-stimulated ENaC activity in polarized mCCDcl1 cells were generated by coupling electrophysiological measurements of amiloride-sensitive currents with RNAseq. Generation of a principal cell-specific reporter mouse line, mT/mG -Aqp2Cre, enabled isolation of primary CD principal cells by FACS, and ENaC activity was measured in cultured primary cells after acute application of corticosteroids. Expression of target genes was assessed by qRT-PCR in cultured cells or freshly isolated cells after the acute elevation of steroid hormones in mT/mG -Aqp2Cre mice. Results Physiological relevance of the mCCDcl1 model was confirmed with aldosterone (ALDO)-specific stimulation of SGK1 and ENaC activity. Corticosterone (CORT) only modulated these responses at supraphysiological concentrations or when 11βHSD2 was inhibited. When 11βHSD2 protection was intact, CORT caused no significant change in transcripts. We identified a small number of ALDO-induced transcripts associated with stimulated ENaC activity in mCCDcl1 cells and a much larger number with CORT in the absence of 11βHSD2 activity. Principal cells isolated from mT/mG -Aqp2Cre mice were validated and assessment of identified ALDO-induced genes revealed that Sgk1 , Zbtbt16 , Sult1d1 , Rasd1 , and Gm43305 are acutely upregulated by corticosteroids both in vitro and in vivo . Conclusions This study reports the transcriptome of mCCDcl1 cells and identifies a small number of ALDO-induced genes associated with acute stimulation of ENaC, including three previously undescribed genes.
Collapse
Affiliation(s)
- Struan Loughlin
- Cellular Medicine Research Division, University of St Andrews, St Andrews, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah M. Costello
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. Roe
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, United Kingdom
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stuart M. Wilson
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, United Kingdom
| | - Matthew A. Bailey
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Morag K. Mansley
- Cellular Medicine Research Division, University of St Andrews, St Andrews, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Pharmacy, School of Medicine, Pharmacy and Health, Durham University Queen's Campus, Stockton-on-Tees, United Kingdom
| |
Collapse
|
5
|
Pro-oxidative priming but maintained cardiac function in a broad spectrum of murine models of chronic kidney disease. Redox Biol 2022; 56:102459. [PMID: 36099852 PMCID: PMC9482130 DOI: 10.1016/j.redox.2022.102459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as ‘uremic cardiomyopathy’. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. Methods and results CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE−/−, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. Conclusion This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional “hits” are required to induce uremic cardiomyopathy. Translational perspective Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as ‘uremic cardiomyopathy’. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional “hits” are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies. Development of a CKD mouse model with a clear cardiac functional or morphological phenotype is challenging. Cardiac oxidative stress response as well as oxidative stress markers are increased in a broad spectrum of CKD mouse models. Our findings suggest need of additional cardiovascular hits to clearly induce uremic cardiomyopathy as observed in patients.
Collapse
|
6
|
Fareed SA, Almilaibary AA, Nooh HZ, Hassan SM. Ameliorating effect of gum arabic on the liver tissues of the uremic rats; A biochemical and histological study. Tissue Cell 2022; 76:101799. [DOI: 10.1016/j.tice.2022.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
|
7
|
Shinozaki Y, Katayama Y, Yamaguchi F, Suzuki T, Watanabe K, Uno K, Tsutsui T, Sugimoto M, Shinohara M, Miyajima K, Ohta T. Salt loading with unilateral nephrectomy accelerates decline in glomerular filtration rate in the hypertensive, obese, type 2 diabetic SDT fatty rat model of diabetic kidney disease. Clin Exp Pharmacol Physiol 2022; 49:492-500. [DOI: 10.1111/1440-1681.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yuichi Shinozaki
- Laboratory of Animal Physiology and Functional Anatomy Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Yuko Katayama
- Research Division SCOHIA PHARMA, Inc. Kanagawa Japan
| | | | | | - Kana Watanabe
- Department of Nutritional Science and Food Safety Faculty of Applied Biosciences Tokyo University of Agriculture Tokyo Japan
| | - Kinuko Uno
- Department of Nutritional Science and Food Safety Faculty of Applied Biosciences Tokyo University of Agriculture Tokyo Japan
| | - Takahiro Tsutsui
- Laboratory of Animal Physiology and Functional Anatomy Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Miki Sugimoto
- Laboratory of Animal Physiology and Functional Anatomy Graduate School of Agriculture Kyoto University Kyoto Japan
| | | | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety Faculty of Applied Biosciences Tokyo University of Agriculture Tokyo Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
8
|
Bell RM, Denby L. Myeloid Heterogeneity in Kidney Disease as Revealed through Single-Cell RNA Sequencing. KIDNEY360 2021; 2:1844-1851. [PMID: 35372996 PMCID: PMC8785845 DOI: 10.34067/kid.0003682021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 02/04/2023]
Abstract
Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation, and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Although this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promise to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater-resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying etiology to further reveal the patterning of immune cells and nonimmune renal cells. This review summarizes the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies, and published findings using scRNA-seq in the context of myeloid cells and the kidney.
Collapse
Affiliation(s)
- Rachel M.B. Bell
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Denby
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Soppert J, Frisch J, Wirth J, Hemmers C, Boor P, Kramann R, Vondenhoff S, Moellmann J, Lehrke M, Hohl M, van der Vorst EPC, Werner C, Speer T, Maack C, Marx N, Jankowski J, Roma LP, Noels H. A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney Int 2021; 101:256-273. [PMID: 34774555 DOI: 10.1016/j.kint.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Janina Frisch
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Julia Wirth
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hemmers
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Mathias Hohl
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Werner
- Department of Internal Medicine III, Cardiology/Angiology, University of Homburg, Homburg/Saar, Germany
| | - Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Würzburg, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, Cardiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Kim K, Anderson EM, Thome T, Lu G, Salyers ZR, Cort TA, O'Malley KA, Scali ST, Ryan TE. Skeletal myopathy in CKD: a comparison of adenine-induced nephropathy and 5/6 nephrectomy models in mice. Am J Physiol Renal Physiol 2021; 321:F106-F119. [PMID: 34121452 PMCID: PMC8321803 DOI: 10.1152/ajprenal.00117.2021] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Preclinical animal models of chronic kidney disease (CKD) are critical to investigate the underlying mechanisms of disease and to evaluate the efficacy of novel therapeutics aimed to treat CKD-associated pathologies. The objective of the present study was to compare the adenine diet and 5/6 nephrectomy (Nx) CKD models in mice. Male and female 10-wk-old C57BL/6J mice (n = 5-9 mice/sex/group) were randomly allocated to CKD groups (0.2-0.15% adenine-supplemented diet or 5/6 Nx surgery) or the corresponding control groups (casein diet or sham surgery). Following the induction of CKD, the glomerular filtration rate was reduced to a similar level in both adenine and 5/6 Nx mice (adenine diet-fed male mice: 81.1 ± 41.9 µL/min vs. 5/6 Nx male mice: 160 ± 80.9 µL/min, P = 0.5875; adenine diet-fed female mice: 112.9 ± 32.4 µL/min vs. 5/6 Nx female mice: 107.0 ± 45.7 µL/min, P = 0.9995). Serum metabolomics analysis indicated that established uremic toxins were robustly elevated in both CKD models, although some differences were observed between CKD models (i.e., p-cresol sulfate). Dysregulated phosphate homeostasis was observed in the adenine model only, whereas Ca2+ homeostasis was disturbed in male mice with both CKD models. Compared with control mice, muscle mass and myofiber cross-sectional areas of the extensor digitorum longus and soleus muscles were ∼18-24% smaller in male CKD mice regardless of the model but were not different in female CKD mice (P > 0.05). Skeletal muscle mitochondrial respiratory function was significantly decreased (19-24%) in CKD mice in both models and sexes. These findings demonstrate that adenine diet and 5/6 Nx models of CKD have similar levels of renal dysfunction and skeletal myopathy. However, the adenine diet model demonstrated superior performance with regard to mortality (∼20-50% mortality for 5/6 Nx vs. 0% mortality for the adenine diet, P < 0.05 for both sexes) compared with the 5/6 Nx surgical model.NEW & NOTEWORTHY Numerous preclinical models of chronic kidney disease have been used to evaluate skeletal muscle pathology; however, direct comparisons of popular models are not available. In this study, we compared adenine-induced nephropathy and 5/6 nephrectomy models. Both models produced equivalent levels of muscle atrophy and mitochondrial impairment, but the adenine model exhibited lower mortality rates, higher consistency in uremic toxin levels, and dysregulated phosphate homeostasis compared with the 5/6 nephrectomy model.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veteran Affairs Medical Center, Gainesville, Florida
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Guanyi Lu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
| | - Zachary R Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veteran Affairs Medical Center, Gainesville, Florida
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veteran Affairs Medical Center, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
- Center for Exercise Science, University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
Liu X, Man S, Luo C, Liu Y, Liu Y, Liu C, Gao W. Shunaoxin pills improve the antihypertensive effect of nifedipine and alleviate its renal lipotoxicity in spontaneous hypertension rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:386-395. [PMID: 33098358 DOI: 10.1002/tox.23044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Shunaoxin pills (SNX) have been used to treat cerebrovascular diseases in China since 2005. Hypertension is a major risk factor for cerebrovascular disease. This study aimed to explore the synergistic antihypertensive effect of SNX and nifedipine and whether SNX could alleviate nifedipine-induced renal lipotoxicity. During administration, systolic blood pressure was measured weekly. After 5 weeks administration, we examined pathological changes of kidney, renal function, the lipid metabolism index, and adipogenesis genes expression in the kidney tissues, and explored its underlying mechanism. Finally, network pharmacology was used for supplement and verification. As a result, SNX improved the antihypertensive effect of nifedipine and apparently improved nifedipine-induced renal pathological changes, dyslipidemia and the levels of adipogenesis gene expression in kidney tissues. SNX reduced the levels of interleukin-6 and interleukin-1β in renal tissues, down-regulated the production of malondialdehyde, and increased superoxide dismutase activity and the protein expression of heme oxygenase-1 in kidney tissues. Network pharmacology also showed that SNX could improve nifedipine-induced renal lipotoxicity. The combination of SNX and nifedipine had certain benefits in the treatment of hypertension.
Collapse
Affiliation(s)
- Xuanshuo Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chen Luo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Liu
- Department of Pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|