1
|
Wang S, Fang R, Huang L, Zhou L, Liu H, Cai M, Sha’aban A, Yu C, Akkaif MA. Acupuncture in Traditional Chinese Medicine: A Complementary Approach for Cardiovascular Health. J Multidiscip Healthc 2024; 17:3459-3473. [PMID: 39050695 PMCID: PMC11268752 DOI: 10.2147/jmdh.s476319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Cardiovascular diseases (CVDs) are increasingly prevalent in clinical settings. With the continuous improvement of people's living standards, the gradual acceleration of the pace of life, and the deterioration of the living environment in recent years, the incidence of CVDs is increasing annually. The prevalence of CVDs among individuals aged 50 and above is notably elevated, posing a significant risk to patients' well-being and lives. At this juncture, numerous clinical treatment choices are available for managing CVDs, with traditional Chinese medicine (TCM) therapy standing out as a practical, safe, and reliable option. Over the recent years, there has been growing acknowledgement among both medical professionals and patients. With the expanding integration of TCM in the treatment of various clinical conditions, the use of TCM in managing CVDs has gained significant attention within the medical community, potentially emerging as an efficacious approach for addressing cardiovascular diseases. This article conducts a comprehensive review of the TCM approach, particularly acupuncture, as a supplementary treatment for CVDs, highlighting its ability to effectively lower blood pressure, decrease coronary artery events, mitigate arrhythmias, and enhance cardiac function when used alongside conventional medication. The review underscores the promise of acupuncture in enhancing cardiovascular health, although variations in research methodologies necessitate standardized applications.
Collapse
Affiliation(s)
- Shengfeng Wang
- Rehabilitation Department of Chinese Medicine, The Fourth People’s Hospital of Kunshan, Kunshan City, Jiangsu Province, People’s Republic of China
| | - Ruxue Fang
- Rehabilitation Department of Chinese Medicine, The Fourth People’s Hospital of Kunshan, Kunshan City, Jiangsu Province, People’s Republic of China
| | - Lei Huang
- Rehabilitation Department of Chinese Medicine, The Fourth People’s Hospital of Kunshan, Kunshan City, Jiangsu Province, People’s Republic of China
| | - Liping Zhou
- Rehabilitation Department of Chinese Medicine, The Fourth People’s Hospital of Kunshan, Kunshan City, Jiangsu Province, People’s Republic of China
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Pulau Pinang, Malaysia
| | - Haibo Liu
- Department of Cardiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Meiling Cai
- Department of Obstetrics and Gynecology, Qingpu Branch, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Abubakar Sha’aban
- Health and Care Research Wales Evidence Centre, Cardiff University, Heath Park, Cardiff, UK
| | - Chunxiang Yu
- Rehabilitation Department of Chinese Medicine, The Fourth People’s Hospital of Kunshan, Kunshan City, Jiangsu Province, People’s Republic of China
| | - Mohammed Ahmed Akkaif
- Department of Cardiology, QingPu Branch of Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Pandey M, Suh YJ, Kim M, Davis HJ, Segall JE, Wu M. Mechanical compression regulates tumor spheroid invasion into a 3D collagen matrix. Phys Biol 2024; 21:036003. [PMID: 38574674 DOI: 10.1088/1478-3975/ad3ac5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Uncontrolled growth of tumor cells in confined spaces leads to the accumulation of compressive stress within the tumor. Although the effects of tension within 3D extracellular matrices (ECMs) on tumor growth and invasion are well established, the role of compression in tumor mechanics and invasion is largely unexplored. In this study, we modified a Transwell assay such that it provides constant compressive loads to spheroids embedded within a collagen matrix. We used microscopic imaging to follow the single cell dynamics of the cells within the spheroids, as well as invasion into the 3D ECMs. Our experimental results showed that malignant breast tumor (MDA-MB-231) and non-tumorigenic epithelial (MCF10A) spheroids responded differently to a constant compression. Cells within the malignant spheroids became more motile within the spheroids and invaded more into the ECM under compression; whereas cells within non-tumorigenic MCF10A spheroids became less motile within the spheroids and did not display apparent detachment from the spheroids under compression. These findings suggest that compression may play differential roles in healthy and pathogenic epithelial tissues and highlight the importance of tumor mechanics and invasion.
Collapse
Affiliation(s)
- Mrinal Pandey
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, United States of America
| | - Young Joon Suh
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, United States of America
| | - Minha Kim
- Department of Biological Sciences, Cornell University, 216 Stimson Hall, Ithaca, NY 14853, United States of America
| | - Hannah Jane Davis
- Department of Biological Sciences, Cornell University, 216 Stimson Hall, Ithaca, NY 14853, United States of America
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States of America
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, 306 Riley-Robb Hall, Ithaca, NY 14853, United States of America
| |
Collapse
|
3
|
Mainer-Pardos E, Villavicencio Álvarez VE, Moreno-Apellaniz N, Gutiérrez-Logroño A, Calero-Morales S. Effects of a neuromuscular training program on the performance and inter-limb asymmetries in highly trained junior male tennis players. Heliyon 2024; 10:e27081. [PMID: 38439841 PMCID: PMC10909755 DOI: 10.1016/j.heliyon.2024.e27081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Background The objective of this study was to assess the effectiveness of neuromuscular training on the performance of highly trainer junior tennis players. Methods Twelve male tennis players (age: 13.4 ± 0.36 years; weight: 50.2 ± 6.29 kg; height: 163 ± 4.41 cm) participated and were randomly divided into two groups. The experimental group (EG) performed neuromuscular training that included exercises for speed, strength, throws, agility, jumps and coordination twice a week for a duration of 10 weeks. Performance was evaluated using various variables, including bilateral and unilateral countermovement jump, 30 cm drop jump and horizontal jump, 505 change of direction test conducted with both the right and left legs, 20-m sprint, and overhead 3 kg medicine ball throw. Asymmetries were also evaluated during the unilateral tests. The impact of the training was assessed through the utilization of ANCOVA tests and effect size measurements. Results The results indicated a significant enhancement in the EG, specifically in bilateral vertical jump and horizontal jump, as well as explosive strength and speed. Conversely, the control group (CG) did not display similar advancements. Furthermore, there was no increase in asymmetries. Conclusion This suggests that the implementation of a neuromuscular training program could prove to be an effective approach in enhancing explosive power in the lower limbs among young competitive tennis players. Finally, this training program could contribute to the enhancement of their physical attributes in lower body of young tennis players.
Collapse
Affiliation(s)
- Elena Mainer-Pardos
- University of San Jorge, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | | | | | | | - Santiago Calero-Morales
- Department of Human and Social Sciences, Universidad de las Fuerzas Armadas-ESPE, Quito, 171103, Ecuador
| |
Collapse
|
4
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Meyer-Jens M, Wenzel K, Grube K, Rüdebusch J, Krämer E, Bahls M, Müller K, Voß H, Schlüter H, Felix SB, Carrier L, Könemann S, Schlossarek S. Sacubitril/valsartan reduces proteasome activation and cardiomyocyte area in an experimental mouse model of hypertrophy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 7:100059. [PMID: 39802437 PMCID: PMC11708427 DOI: 10.1016/j.jmccpl.2023.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2025]
Abstract
Sacubitril/valsartan (Sac/Val) belongs to the group of angiotensin receptor-neprilysin inhibitors and has been used for the treatment of heart failure (HF) for several years. The mechanisms that mediate the beneficial effects of Sac/Val are not yet fully understood. In this study we investigated whether Sac/Val influences the two proteolytic systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), in a mouse model of pressure overload induced by transverse aortic constriction (TAC) and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with endothelin-1 (ET1) serving as a human cellular model of hypertrophy. TAC mice showed a continuous decline in cardiac function starting from day 14 after surgery. Administration of Sac/Val for 6 weeks counteracted the deterioration of cardiac function and attenuated hypertrophy and fibrosis in TAC mice. The expression of ALP key markers did not differ between the groups. Proteasome activity was higher in TAC mice and normalized by Sac/Val. In hiPSC-CMs, all treatments (Sac, Val or Sac/Val) normalized mean cell area. However, Sac alone or in combination with Val, but not Val alone prevented ET1-induced hypertrophic gene program and proteomic changes. In conclusion, Sac/Val normalized proteasome activity, improved cardiac function and reduced fibrosis and hypertrophy in TAC mice. Molecular analysis in hiPSC-CMs suggests that a major part of the beneficial effects of Sac/Val is derived from the Sac action rather than from Val.
Collapse
Affiliation(s)
- Moritz Meyer-Jens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Karina Grube
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Julia Rüdebusch
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Kilian Müller
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hannah Voß
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stephan B. Felix
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
6
|
Kofoed A, Hindborg M, Hjembæk-Brandt J, Sørensen CD, Kolpen M, Bestle MH. Exhaled nitric oxide in intubated ICU patients on mechanical ventilation-a feasibility study. J Breath Res 2023; 17:046014. [PMID: 37657436 DOI: 10.1088/1752-7163/acf607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
It can be a clinical challenge to distinguish inflammation from infection in critically ill patients. Therefore, valid and conclusive surrogate markers for infections are desired. Nitric oxide (NO) might be that marker since concentrations of exhaled NO have shown to change in the presence of various diseases. This observational, prospective, single-center feasibility study aimed to investigate if fractional exhaled NO (FeNO) can be measured in intubated patients with or without infection, pneumonia and septic shock in a standardized, reliable setting. 20 intubated patients in the intensive care unit (ICU) were included for analysis. FeNO mean values were measured in the endotracheal tube via the suction channel using a chemiluminescence based analyzer. We developed a pragmatic method to measure FeNO repeatedly and reliably in intubated patients using a chemiluminescence based analyzer. We found a median of 0.98 (0.59-1.44) FeNO mean (ppb) in exhaled breath from all 20 intubated patient. Intubated patient with suspected infection had a significantly lower median FeNO mean compared with the intubated patients without suspected infection. Similarly did patients with septic shock demonstrate a significantly lower median FeNO mean than without septic shock. We found no statistical difference in median FeNO mean for intubated patients with pneumonia. It was feasible to measure FeNO in intubated patients in the ICU. Our results indicate decreased levels of FeNO in infected intubated patients in the ICU. The study was not powered to provide firm conclusions, so larger trials are needed to confirm the results and to prove FeNO as a useful biomarker for distinguishment between infection and inflammation in the ICU.
Collapse
Affiliation(s)
- Andreas Kofoed
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Mathias Hindborg
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Jeppe Hjembæk-Brandt
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Christian Dalby Sørensen
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten H Bestle
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Phase Response Curve to Light under Ambulatory Conditions: A Pilot Study for Potential Application to Daylight Saving Time Transitions. BIOLOGY 2022; 11:biology11111584. [PMID: 36358285 PMCID: PMC9687529 DOI: 10.3390/biology11111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Several studies have investigated the relationship between daylight saving time (DST) and sleep alterations, psychiatric disorders, cardiovascular events and traffic accidents. However, very few have monitored participants while maintaining their usual lifestyle before and after DST. Considering that DST transitions modify human behavior and, therefore, people's light exposure patterns, the aim of this study was to investigate the potential effects of DST on circadian variables, considering sleep and, for the first time, the human phase response curve to light. To accomplish this, eight healthy adults (33 ± 11 years old, mean ± SD) were recruited to monitor multivariable circadian markers and light exposure by means of a wearable ambulatory monitoring device: Kronowise®. The following night phase markers were calculated: midpoints of the five consecutive hours of maximum wrist temperature (TM5) and the five consecutive hours of minimum time in movement (TL5), sleep onset and offset, as well as sleep duration and light intensity. TM5 for wrist temperature was set as circadian time 0 h, and the balance between advances and delays considering the phase response curve to light was calculated individually before and after both DST transitions. To assess internal desynchronization, the possible shift in TM5 for wrist temperature and TL5 for time in movement were compared. Our results indicate that the transition to DST seems to force the circadian system to produce a phase advance to adapt to the new time. However, the synchronizing signals provided by natural and personal light exposure are not in line with such an advance, which results in internal desynchronization and the need for longer synchronization times. On the contrary, the transition back to ST, which implies a phase delay, is characterized by a faster adaptation and maintenance of internal synchronization, despite the fact that exposure to natural light would favor a phase advance. Considering the pilot nature of this study, further research is needed with higher sample sizes.
Collapse
|
8
|
van Wassenhove V. Temporal disorientations and distortions during isolation. Neurosci Biobehav Rev 2022; 137:104644. [PMID: 35364190 DOI: 10.1016/j.neubiorev.2022.104644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 11/19/2022]
Abstract
Understanding how the brain maps time is central to neuroscience, behavior, psychology, and cognition. Just as in spatial navigation, self-positioning in a temporal cognitive map depends on numerous factors that are both exogenous and endogenous (e.g. time of day and experienced durations, respectively). The deprivation of external temporal landmarks can greatly reduce the ability of participants to orient in time and to formulate an adequate endogenous representation of time. However, this area of investigation in humans shows a great paucity of empirical data. This article aims at unearthing some of the experimental work that has systematically explored how humans' awareness of time is affected by varying degrees of isolation protocols. The assessment of the literature on the impact of isolation (broadly construed) on human temporalities may contribute to contextualizing the temporal distortions and disorientations reported during the ongoing worldwide pandemic Covid-19.
Collapse
Affiliation(s)
- Virginie van Wassenhove
- CEA, NeuroSpin, Cognitive Neuroimaging Unit, INSERM, CNRS, Université Paris-Saclay, 91191 Gif/Yvette, France.
| |
Collapse
|
9
|
Ruperez C, Blasco-Roset A, Kular D, Cairo M, Ferrer-Curriu G, Villarroya J, Zamora M, Crispi F, Villarroya F, Planavila A. Autophagy is Involved in Cardiac Remodeling in Response to Environmental Temperature Change. Front Physiol 2022; 13:864427. [PMID: 35514342 PMCID: PMC9061941 DOI: 10.3389/fphys.2022.864427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: To study the reversibility of cold-induced cardiac hypertrophy and the role of autophagy in this process. Background: Chronic exposure to cold is known to cause cardiac hypertrophy independent of blood pressure elevation. The reversibility of this process and the molecular mechanisms involved are unknown. Methods: Studies were performed in two-month-old mice exposed to cold (4°C) for 24 h or 10 days. After exposure, the animals were returned to room temperature (21°C) for 24 h or 1 week. Results: We found that chronic cold exposure significantly increased the heart weight/tibia length (HW/TL) ratio, the mean area of cardiomyocytes, and the expression of hypertrophy markers, but significantly decreased the expression of genes involved in fatty acid oxidation. Echocardiographic measurements confirmed hypertrophy development after chronic cold exposure. One week of deacclimation for cold-exposed mice fully reverted the morphological, functional, and gene expression indicators of cardiac hypertrophy. Experiments involving injection of leupeptin at 1 h before sacrifice (to block autophagic flux) indicated that cardiac autophagy was repressed under cold exposure and re-activated during the first 24 h after mice were returned to room temperature. Pharmacological blockage of autophagy for 1 week using chloroquine in mice subjected to deacclimation from cold significantly inhibited the reversion of cardiac hypertrophy. Conclusion: Our data indicate that mice exposed to cold develop a marked cardiac hypertrophy that is reversed after 1 week of deacclimation. We propose that autophagy is a major mechanism underlying the heart remodeling seen in response to cold exposure and its posterior reversion after deacclimation.
Collapse
Affiliation(s)
- C Ruperez
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - A Blasco-Roset
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - D Kular
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Cairo
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - G Ferrer-Curriu
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - J Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - M Zamora
- Fetal Medicine Research Center, BCNatal -Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - F Crispi
- Fetal Medicine Research Center, BCNatal -Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - F Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - A Planavila
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
10
|
The Effects of Successive Soccer Matches on the Internal Match Load, Stress Tolerance, Salivary Cortisol and Jumping Performance in Youth Soccer Players. J Hum Kinet 2021; 80:173-184. [PMID: 34868427 PMCID: PMC8607784 DOI: 10.2478/hukin-2021-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The study aim was to analyze the effects of successive matches on the internal match load, stress tolerance, salivary cortisol concentration and countermovement vertical jump height in twelve youth soccer players (16.6 ± 0.5 yr; 175 ± 8 cm; 65 ± 8 kg) who performed four official matches within a four day-period with a 24-h recovery interval between the matches. The internal match load, monotony index and competitive strain, as well as stress tolerance were examined. Saliva samples were collected and countermovement vertical jump height was assessed 60 min pre and 30 min post each match; delta of salivary cortisol and countermovement vertical jump height for each match were analyzed. Salivary cortisol was analyzed using an enzyme-linked immunosorbent assay. The results of ANOVA with repeated measures showed no differences between matches for the internal match load (p > 0.05). The scores of the monotony index and competitive strain were 4.3 (±2.3) and 8104 (±6795) arbitrary units, respectively. There was no difference for stress tolerance between matches (p > 0.05). Delta values of salivary cortisol were not different among the assessed matches (F(3,33) = 1.397, p = 0.351, η2: 0.09); however, delta of countermovement vertical jump height decreased from match 1 to match 4 (F(3,33) = 8.64, p < 0.001, η2: 0.44). The current findings suggest that participating in four successive matches, with 24-h of recovery in between, may not lead to changes in stress tolerance and salivary cortisol of youth players, but it may induce a decrease in players' jumping performance after the fourth match.
Collapse
|
11
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|