1
|
Jani V, Kass DA. What can skinned cardiomyocytes teach us about heart disease? Response to letter to the editor: Challenges in assessing myoflament calcium sensitivity and contractile function in HFpEF by Christophe Maack and Vasco Sequeira. J Mol Cell Cardiol 2025; 204:32-34. [PMID: 40381935 DOI: 10.1016/j.yjmcc.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Affiliation(s)
- Vivek Jani
- Department of Medicine, Division of Cardiology and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, United States of America
| | - David A Kass
- Department of Medicine, Division of Cardiology and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, United States of America.
| |
Collapse
|
2
|
McDonald KS, Kalogeris TJ, Veteto AB, Davis DJ, Hanft LM. Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes. J Gen Physiol 2025; 157:e202413678. [PMID: 40126337 PMCID: PMC11932042 DOI: 10.1085/jgp.202413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025] Open
Abstract
During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Daniel J. Davis
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Goetz WA, Yao J, Brener M, Puri R, Swaans M, Schopka S, Wiesner S, Creutzenberg M, Sievert H, Kassab GS. The Stiffness of the Ascending Aorta Has a Direct Impact on Left Ventricular Function: An In Silico Model. Bioengineering (Basel) 2024; 11:603. [PMID: 38927839 PMCID: PMC11200724 DOI: 10.3390/bioengineering11060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
During systole, longitudinal shortening of the left ventricle (LV) displaces the aortic root toward the apex of the heart and stretches the ascending aorta (AA). An in silico study (Living Left Heart Human Model, Dassault Systèmes Simulia Corporation) demonstrated that stiffening of the AA affects myocardial stress and LV strain patterns. With AA stiffening, myofiber stress increased overall in the LV, with particularly high-stress areas at the septum. The most pronounced reduction in strain was noted along the septal longitudinal region. The pressure-volume loops showed that AA stiffening caused a deterioration in LV function, with increased end-systolic volume, reduced systolic LV pressure, decreased stroke volume and effective stroke work, but elevated end-diastolic pressure. An increase in myofiber contractility indicated that stroke volume and effective stroke work could be recovered, with an increase in LV end-systolic pressure and a decrease in end-diastolic pressure. Longitudinal and radial strains remained reduced, but circumferential strains increased over baseline, compensating for lost longitudinal LV function. Myofiber stress increased overall, with the most dramatic increase in the septal region and the LV apex. We demonstrate a direct mechanical pathophysiologic link between stiff AA and reduced longitudinal left ventricular strain which are common in patients with HFpEF.
Collapse
Affiliation(s)
- Wolfgang Anton Goetz
- Cardiothoracic Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (W.A.G.); (M.C.)
| | - Jiang Yao
- Dassault Systèmes, Johnston, RI 02919, USA
| | - Michael Brener
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10027, USA;
| | - Rishi Puri
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - Martin Swaans
- St. Antonius Ziekenhuis, 3435 Nieuwegein, The Netherlands;
| | - Simon Schopka
- Cardiothoracic Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (W.A.G.); (M.C.)
| | - Sigrid Wiesner
- Cardiothoracic Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (W.A.G.); (M.C.)
| | - Marcus Creutzenberg
- Cardiothoracic Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (W.A.G.); (M.C.)
| | | | | |
Collapse
|
4
|
Tran P, Linekar A, Dandekar U, Barker T, Balasubramanian S, Bhaskara-Pillai J, Shelley S, Maddock H, Banerjee P. Profiling the Biomechanical Responses to Workload on the Human Myocyte to Explore the Concept of Myocardial Fatigue and Reversibility: Rationale and Design of the POWER Heart Failure Study. J Cardiovasc Transl Res 2024; 17:275-286. [PMID: 37126208 PMCID: PMC10150683 DOI: 10.1007/s12265-023-10391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
It remains unclear why some patients develop heart failure without evidence of structural damage. One theory relates to impaired myocardial energetics and ventricular-arterial decoupling as the heart works against adverse mechanical load. In this original study, we propose the novel concept of myocardial fatigue to capture this phenomenon and aim to investigate this using human cardiomyocytes subjected to a modern work-loop contractility model that closely mimics in vivo cardiac cycles. This proof-of-concept study (NCT04899635) will use human myocardial tissue samples from patients undergoing cardiac surgery to develop a reproducible protocol to isolate robust calcium-tolerant cardiomyocytes. Thereafter, work-loop contractility experiments will be performed over a range of preload, afterload and cycle frequency as a function of time to elicit any reversible reduction in contractile performance (i.e. fatigue). This will provide novel insight into mechanisms behind heart failure and myocardial recovery and serve as a valuable research platform in translational cardiovascular research.
Collapse
Affiliation(s)
- Patrick Tran
- Centre for Sport, Exercise & Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK.
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, UK.
| | - Adam Linekar
- Centre for Sport, Exercise & Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- InoCardia Ltd, TechnoCentre, Puma Way, Coventry, UK
| | - Uday Dandekar
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Thomas Barker
- Centre for Sport, Exercise & Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sendhil Balasubramanian
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Jain Bhaskara-Pillai
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Sharn Shelley
- Centre for Sport, Exercise & Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- InoCardia Ltd, TechnoCentre, Puma Way, Coventry, UK
| | - Helen Maddock
- Centre for Sport, Exercise & Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- InoCardia Ltd, TechnoCentre, Puma Way, Coventry, UK
| | - Prithwish Banerjee
- Centre for Sport, Exercise & Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
5
|
Patel JR, Park KJ, Bradshaw AS, Phan T, Fitzsimons DP. Cooperative mechanisms underlie differences in myocardial contractile dynamics between large and small mammals. J Gen Physiol 2023; 155:e202213315. [PMID: 37725091 PMCID: PMC10509357 DOI: 10.1085/jgp.202213315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/08/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Ca2+ binding to troponin C (TnC) and myosin cross-bridge binding to actin act in a synergistic cooperative manner to modulate myocardial contraction and relaxation. The responsiveness of the myocardial thin filament to the activating effects of Ca2+ and myosin cross-bridge binding has been well-characterized in small mammals (e.g., mice). Given the nearly 10-fold difference in resting heart rates and twitch kinetics between small and large mammals, it is unlikely that the cooperative mechanisms underlying thin filament activation are identical in these two species. To test this idea, we measured the Ca2+ dependencies of steady-state force and the rate constant of force redevelopment (ktr) in murine and porcine permeabilized ventricular myocardium. While murine myocardium exhibited a steep activation-dependence of ktr, the activation-dependent profile of ktr was significantly reduced in porcine ventricular myocardium. Further insight was attained by examining force-pCa and ktr-pCa relationships. In the murine myocardium, the pCa50 for ktr was right-shifted compared with the pCa50 for force, meaning that increases in steady-state force occurred well before increases in the rate of force redevelopment were observed. In the porcine myocardium, we observed a tighter coupling of the force-pCa and ktr-pCa relationships, as evidenced by near-maximal rates of force redevelopment at low levels of Ca2+ activation. These results demonstrate that the molecular mechanisms underlying the cooperative activation of force are a dynamic property of the mammalian heart, involving, at least in part, the species- and tissue-specific expression of cardiac myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jitandrakumar R. Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kayla J.V. Park
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Aidan S. Bradshaw
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| | - Tuan Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
6
|
Jani V, Aslam MI, Fenwick AJ, Ma W, Gong H, Milburn G, Nissen D, Cubero Salazar IM, Hanselman O, Mukherjee M, Halushka MK, Margulies KB, Campbell KS, Irving TC, Kass DA, Hsu S. Right Ventricular Sarcomere Contractile Depression and the Role of Thick Filament Activation in Human Heart Failure With Pulmonary Hypertension. Circulation 2023; 147:1919-1932. [PMID: 37194598 PMCID: PMC10270283 DOI: 10.1161/circulationaha.123.064717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in patients with heart failure with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. We thus sought to characterize RV myocyte contractile depression in HFrEF-PH, identify those components reflected by clinical RV indices, and uncover underlying biophysical mechanisms. METHODS Resting, calcium-, and load-dependent mechanics were prospectively studied in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 patients with HFrEF-PH undergoing cardiac transplantation and 9 organ donor controls. RESULTS Unsupervised machine learning using myocyte mechanical data with the highest variance yielded 2 HFrEF-PH subgroups that in turn mapped to patients with decompensated or compensated clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in decompensated clinical RV function, whereas surprisingly, many other major myocyte contractile measures including peak power and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick filament defects, myofibrillar structure was assessed by x-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in decompensated clinical RV function, but not compensated clinical RV function, as compared with controls. This corresponded to reduced myosin ATP turnover in decompensated clinical RV function myocytes, indicating less myosin in a crossbridge-ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Last, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human heart failure. CONCLUSIONS Although there are many RV myocyte contractile deficits in HFrEF-PH, commonly used clinical indices only detect reduced isometric calcium-stimulated force, which is related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.
Collapse
Affiliation(s)
- Vivek Jani
- Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - M. Imran Aslam
- Division of Cardiology, Department of Medicine, University of Texas San Antonio School of Medicine (M.I.A.)
| | - Axel J. Fenwick
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Weikang Ma
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - Henry Gong
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - Gregory Milburn
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington (G.M., K.S.C.)
| | - Devin Nissen
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - Ilton M. Cubero Salazar
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Olivia Hanselman
- Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Monica Mukherjee
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Marc K. Halushka
- Division of Cardiovascular Pathology, Department of Pathology (M.K.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.)
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington (G.M., K.S.C.)
| | - Thomas C. Irving
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.)
| | - David A. Kass
- Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Steven Hsu
- Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Tran P, Banerjee P. Myocardial Fatigue at a Glance. Curr Heart Fail Rep 2023; 20:191-193. [PMID: 37133679 DOI: 10.1007/s11897-023-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
Expanding on the modern lexicon of heart failure (HF), the novel mechano-energetic concept of myocardial fatigue describes a transiently energy-depleted myocardium with impaired contractility and relaxation in the face of adverse haemodynamic load. It encompasses established concepts of ventricular-arterial decoupling, deranged cardiac energetics and impaired myocardial efficiency, offering an alternative explanation for functional causes of HF.
Collapse
Affiliation(s)
- Patrick Tran
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK.
- Centre for Sport, Exercise, Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, Coventry, CV1 2DS, UK.
| | - Prithwish Banerjee
- University Hospital Coventry and Warwickshire, Clifford Bridge Road, Coventry, CV2 2DX, UK
- Centre for Sport, Exercise, Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, Coventry, CV1 2DS, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Jani V, Aslam MI, Fenwick AJ, Ma W, Gong H, Milburn G, Nissen D, Salazar IC, Hanselman O, Mukherjee M, Halushka MK, Margulies KB, Campbell K, Irving TC, Kass DA, Hsu S. Right Ventricular Sarcomere Contractile Depression and the Role of Thick Filament Activation in Human Heart Failure with Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531988. [PMID: 36945606 PMCID: PMC10029011 DOI: 10.1101/2023.03.09.531988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Rationale Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in heart failure patients with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. Objective To determine components of myocyte contractile depression in HFrEF-PH, identify those reflected by clinical RV indices, and elucidate their underlying biophysical mechanisms. Methods and Results Resting, calcium- and load-dependent mechanics were measured in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 HFrEF-PH patients undergoing cardiac transplantation and 9 organ-donor controls. Unsupervised machine learning using myocyte mechanical data with the highest variance yielded two HFrEF-PH subgroups that in turn mapped to patients with depressed (RVd) or compensated (RVc) clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in RVd, while surprisingly, many other major myocyte contractile measures including peak power, maximum unloaded shortening velocity, and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick-filament defects, myofibrillar structure was assessed by X-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in RVd but not RVc, as compared to controls. This corresponded to reduced myosin ATP turnover in RVd myocytes, indicating less myosin in a cross-bridge ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Lastly, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human HF. Conclusions While there are multiple RV myocyte contractile deficits In HFrEF-PH, clinical indices primarily detect reduced isometric calcium-stimulated force related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.
Collapse
|
9
|
Tanner BCW, Awinda PO, Agonias KB, Attili S, Blair CA, Thompson MS, Walker LA, Kampourakis T, Campbell KS. Sarcomere length affects Ca2+ sensitivity of contraction in ischemic but not non-ischemic myocardium. J Gen Physiol 2023; 155:213800. [PMID: 36633584 PMCID: PMC9859763 DOI: 10.1085/jgp.202213200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In healthy hearts, myofilaments become more sensitive to Ca2+ as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank-Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca2+-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca2+-activated force increased at longer SL for all groups. Ca2+ sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Keinan B Agonias
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, WA, USA
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Cheavar A Blair
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Mindy S Thompson
- Department of Physiology, University of Kentucky , Lexington, KY, USA
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London , London, UK
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky , Lexington, KY, USA.,Division of Cardiovascular Medicine, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
10
|
Rupert C, López JE, Cortez-Toledo E, De la Cruz Cabrera O, Chesler NC, Simpson PC, Campbell SG, Baker AJ. Increased length-dependent activation of human engineered heart tissue after chronic α 1A-adrenergic agonist treatment: testing a novel heart failure therapy. Am J Physiol Heart Circ Physiol 2023; 324:H293-H304. [PMID: 36637971 PMCID: PMC9886349 DOI: 10.1152/ajpheart.00279.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
Chronic stimulation of cardiac α1A-adrenergic receptors (α1A-ARs) improves symptoms in multiple preclinical models of heart failure. However, the translational significance remains unclear. Human engineered heart tissues (EHTs) provide a means of quantifying the effects of chronic α1A-AR stimulation on human cardiomyocyte physiology. EHTs were created from thin slices of decellularized pig myocardium seeded with human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and fibroblasts. With a paired experimental design, EHTs were cultured for 3 wk, mechanically tested, cultured again for 2 wk with α1A-AR agonist A61603 (10 nM) or vehicle control, and retested after drug washout for 24 h. Separate control experiments determined the effects of EHT age (3-5 wk) or repeat mechanical testing. We found that chronic A61603 treatment caused a 25% increase of length-dependent activation (LDA) of contraction compared with vehicle treatment (n = 7/group, P = 0.035). EHT force was not increased after chronic A61603 treatment. However, after vehicle treatment, EHT force was increased by 35% relative to baseline testing (n = 7/group, P = 0.022), suggesting EHT maturation. Control experiments suggested that increased EHT force resulted from repeat mechanical testing, not from EHT aging. RNA-seq analysis confirmed that the α1A-AR is expressed in human EHTs and found chronic A61603 treatment affected gene expression in biological pathways known to be activated by α1A-ARs, including the MAP kinase signaling pathway. In conclusion, increased LDA in human EHT after chronic A61603 treatment raises the possibility that chronic stimulation of the α1A-AR might be beneficial for increasing LDA in human myocardium and might be beneficial for treating human heart failure by restoring LDA.NEW & NOTEWORTHY Chronic stimulation of α1A-adrenergic receptors (α1A-ARs) is known to mediate therapeutic effects in animal heart failure models. To investigate the effects of chronic α1A-AR stimulation in human cardiomyocytes, we tested engineered heart tissue (EHT) created with iPSC-derived cardiomyocytes. RNA-seq analysis confirmed human EHT expressed α1A-ARs. Chronic (2 wk) α1A-AR stimulation with A61603 (10 nM) increased length-dependent activation (LDA) of contraction. Chronic α1A-AR stimulation might be beneficial for treating human heart failure by restoring LDA.
Collapse
Affiliation(s)
- C. Rupert
- Propria LLC, Branford, Connecticut, United States
| | - J. E. López
- Division of Cardiovascular Medicine, Department of Internal Medicine,
University of California Davis, Davis, California, United States
| | - E. Cortez-Toledo
- Division of Cardiovascular Medicine, Department of Internal Medicine,
University of California Davis, Davis, California, United States
| | | | - N. C. Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, Irvine, California, United States
- Department of Biomedical Engineering, University of California, Irvine, California, United States
| | - P. C. Simpson
- Cardiology Division, Veterans Affairs Medical Center, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, California, United States
| | - S. G. Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - A. J. Baker
- Cardiology Division, Veterans Affairs Medical Center, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, California, United States
| |
Collapse
|
11
|
Ma W, Irving TC. Small Angle X-ray Diffraction as a Tool for Structural Characterization of Muscle Disease. Int J Mol Sci 2022; 23:3052. [PMID: 35328477 PMCID: PMC8949570 DOI: 10.3390/ijms23063052] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Small angle X-ray fiber diffraction is the method of choice for obtaining molecular level structural information from striated muscle fibers under hydrated physiological conditions. For many decades this technique had been used primarily for investigating basic biophysical questions regarding muscle contraction and regulation and its use confined to a relatively small group of expert practitioners. Over the last 20 years, however, X-ray diffraction has emerged as an important tool for investigating the structural consequences of cardiac and skeletal myopathies. In this review we show how simple and straightforward measurements, accessible to non-experts, can be used to extract biophysical parameters that can help explain and characterize the physiology and pathology of a given experimental system. We provide a comprehensive guide to the range of the kinds of measurements that can be made and illustrate how they have been used to provide insights into the structural basis of pathology in a comprehensive review of the literature. We also show how these kinds of measurements can inform current controversies and indicate some future directions.
Collapse
Affiliation(s)
- Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C. Irving
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
12
|
Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach. Cell Mol Life Sci 2022; 79:149. [PMID: 35199227 PMCID: PMC8866374 DOI: 10.1007/s00018-022-04196-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.
Collapse
|
13
|
Peripartum cardiomyopathy: a global effort to find the cause and cure for the rare and little understood disease. Biophys Rev 2022; 14:369-379. [PMID: 35340597 PMCID: PMC8921403 DOI: 10.1007/s12551-022-00930-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
In this review, we present our current understanding of peripartum cardiomyopathy (PPCM) based on reports of the incidence, diagnosis and current treatment options. We summarise opinions on whether PPCM is triggered by vascular and/or hormonal causes and examine the influence of comorbidities such as preeclampsia. Two articles published in 2021 strongly support the hypothesis that PPCM may be a familial disease. Using large cohorts of PPCM patients, they summarised the available genomic DNA sequence data that are expressed in human cardiomyocytes. While PPCM is considered a disease predominately affecting the left ventricle, there are data to suggest that some cases also involve right ventricular failure. Finally, we conclude that there is sufficient evidence to warrant an RNAseq investigation and that this would be most informative if performed at the cardiomyocytes level rather than analysing genomic DNA from the peripheral circulation. Given the rarity of PPCM, the combined resources of international human heart tissue biobanks have assembled 30 ventricular tissue samples from PPCM patients, and we are actively seeking to enlarge this patient base by collaborating with human heart tissue banks and research laboratories who would like to join this endeavour.
Collapse
|
14
|
De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents. Int J Mol Sci 2021; 22:ijms22179625. [PMID: 34502534 PMCID: PMC8431798 DOI: 10.3390/ijms22179625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.
Collapse
|
15
|
Ma W, Henze M, Anderson RL, Gong H, Wong FL, Del Rio CL, Irving T. The Super-Relaxed State and Length Dependent Activation in Porcine Myocardium. Circ Res 2021; 129:617-630. [PMID: 34365814 DOI: 10.1161/circresaha.120.318647] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.G., T.I.)
| | - Marcus Henze
- MyoKardia Inc, Brisbane, CA (M.H., R.L.A., F.L.W., C.L.d.R.)
| | | | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.G., T.I.)
| | - Fiona L Wong
- MyoKardia Inc, Brisbane, CA (M.H., R.L.A., F.L.W., C.L.d.R.)
| | | | - Thomas Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago (W.M., H.G., T.I.)
| |
Collapse
|
16
|
Liu F, Wu H, Yang X, Dong Y, Huang G, Genin GM, Lu TJ, Xu F. A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophys J 2021; 120:3764-3775. [PMID: 34280368 DOI: 10.1016/j.bpj.2021.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-β1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-β1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.
Collapse
Affiliation(s)
- Fusheng Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hou Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China
| | - Xiaoyu Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China
| | - Yuqin Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, P.R. China
| | - Guy M Genin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Mechanical Engineering & Materials Science, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China.
| | - Feng Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|