1
|
Rouhi L. Cardiac phenotypes in LMNA mutations. Curr Opin Cardiol 2025; 40:131-138. [PMID: 39998502 PMCID: PMC11968229 DOI: 10.1097/hco.0000000000001209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
PURPOSE OF REVIEW This review highlights the diverse cardiac manifestations of LMNA mutations, focusing on their underlying molecular mechanisms and clinical implications. As LMNA mutations are implicated in cardiomyopathies, such as dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ARVC), and conduction system diseases, understanding these phenotypes is critical for advancing diagnosis and management strategies. RECENT FINDINGS Recent studies reveal that LMNA mutations disrupt nuclear envelope stability, activating the DNA damage response (DDR) and compromising chromatin organization and mechanotransduction. Mouse models have elucidated pathways linking LMNA dysfunction to fibrosis, arrhythmias, and myocardial remodeling. Emerging evidence demonstrates that fibroblasts play a crucial role in cardiac phenotypes. Advances in genetic screening have also underscored the importance of early identification and risk stratification, particularly for arrhythmias and sudden cardiac death. SUMMARY The diverse spectrum of LMNA-related cardiac phenotypes, from isolated conduction defects to severe DCM and ARVC, underscores the necessity of personalized care strategies. Bridging insights from molecular studies and clinical research paves the way for targeted therapies to slow disease progression and improve patient outcomes. Future efforts should prioritize translational research on molecular mechanisms with potential in mouse models, alongside a deeper exploration of genotype-phenotype correlations, to refine and implement effective therapeutic interventions.
Collapse
Affiliation(s)
- Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Mohar NP, Langland CJ, Darr Z, Viles J, Moore SA, Darbro BW, Wallrath LL. A genetic variant in SMAD7 acts as a modifier of LMNA-associated muscular dystrophy, implicating SMAD signaling as a therapeutic target. SCIENCE ADVANCES 2025; 11:eads7903. [PMID: 40249815 PMCID: PMC12007578 DOI: 10.1126/sciadv.ads7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Mutations in LMNA cause multiple types of muscular dystrophy (LMNA-MD). The symptoms of LMNA-MD are highly variable and sensitive to genetic background. To identify genetic contributions to this phenotypic variability, we performed whole-genome sequencing on four siblings possessing the same LMNA mutation with differing degrees of skeletal muscle disease severity. We identified a variant in SMAD7 that segregated with severe muscle disease. To functionally test the SMAD7 variant, we generated a Drosophila model possessing the LMNA mutation and the SMAD7 variant in the orthologous fly genes. The SMAD7 variant increased SMAD signaling and enhanced muscle defects caused by the mutant lamin. Conversely, overexpression of wild-type SMAD7 rescued muscle function. These findings were extended to humans by showing that SMAD signaling is increased in muscle biopsy tissue from individuals with LMNA-MD compared to age-matched controls. Collectively, our findings support SMAD7 as the first functionally tested genetic modifier for LMNA-MD and suggest components of the SMAD pathway as therapeutic targets.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J. Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zachary Darr
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent researcher, Gowrie, Iowa, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Flury G, Arquint F. A case report of non-lamin A/C dilated cardiomyopathy presenting in a patient with Najjar-Malouf syndrome. Eur Heart J Case Rep 2025; 9:ytaf110. [PMID: 40191636 PMCID: PMC11971476 DOI: 10.1093/ehjcr/ytaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Background Phenotyping and genotyping of cardiomyopathies are becoming increasingly important. We describe a rare form of syndromic dilated cardiomyopathy, years after the initial diagnosis of intellectual disability and hypergonadotropic hypogonadism, known as Najjar-Malouf syndrome or cardiogenital syndrome. Case summary A 45-year-old woman was referred for inpatient treatment because of progressive dyspnoea, chest tightness, and ankle oedema. She had a diagnosis of undefined psychomotor development delay and hypergonadotropic hypogonadism, for which she has been receiving hormone substitution treatment since she was 19 years old. The physical examination revealed signs of congestion as well as a right convex thoracic scoliosis and hyperkyphosis. Cardiac biomarkers were elevated, and echocardiography showed severe dilated cardiomyopathy with impaired systolic function, severe pulmonary hypertension, and secondary mitral regurgitation. Cardiac magnetic resonance imaging showed a severely dilated left ventricle with severely reduced left ventricular ejection fraction (20%), thinned myocardium, and late-gadolinium enhancement predominantly in the septum. Genetic screening for dilatative cardiomyopathy-associated genes revealed no mutations, in particular, no mutation of the lamin A/C (LMNA) gene. The patient progressed to heart failure with severely reduced ejection fraction 26 years after diagnosis of psychomotor development delay and hypergonadotropic hypogonadism. Discussion The triad of intellectual disability, hypergonadotropic hypogonadism, and cardiomyopathy enabled the diagnosis of Najjar-Malouf syndrome, also known as cardiogenital syndrome. This case underscores the diagnostic and therapeutic challenges of Najjar-Malouf syndrome, emphasizing the significance of thorough evaluation and genetic testing, particularly considering the association with LMNA mutations. Further research is needed to improve understanding and management strategies for this rare syndrome.
Collapse
Affiliation(s)
- Gian Flury
- Department of Internal Medicine, Ospidal, Center da Sandà Engiadina bassa, Via da’l Ospidal, Scuol CH-7550, Switzerland
| | - Flurina Arquint
- Clinic of Cardiology, Department of Internal Medicine, Kantonsspital Graubünden, Loestrasse 170, Chur CH-7000, Switzerland
| |
Collapse
|
4
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Balakrishnan ID, Lakdawala NK. Contemporary Insights into LMNA Cardiomyopathy. Curr Cardiol Rep 2025; 27:40. [PMID: 39869235 DOI: 10.1007/s11886-025-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW This review aims to explore how a diagnosis of LMNA-related cardiomyopathy (LMNA-CM) informs clinical management, focusing on the prevention and management of its complications, through practical clinical strategies. RECENT FINDINGS Longitudinal studies have enhanced our understanding of the natural history of LMNA-CM including its arrhythmic and non-arrhythmic complications. A LMNA specific ventricular arrhythmia risk prediction strategy has been integrated into clinical practice guidelines. Although less robust, observational studies are shaping gene-specific strategies for mitigating other complications including atrioventricular block, atrial fibrillation and cardiomyopathy, while novel therapies have been evaluated in clinical trials. LMNA-CM follows an aggressive yet generally stereotyped course. Early recognition of anticipated complications allows for more effective prevention and management in both symptomatic and asymptomatic patients.
Collapse
Affiliation(s)
- Iswaree D Balakrishnan
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Garcia‐Pavia P, Lakdawala NK, Sinagra G, Ripoll‐Vera T, Afshar K, Priori SG, Ware JS, Owens A, Li H, Angeli FS, Elliott P, MacRae CA, Judge DP. Characterization and natural history of patients with LMNA-related dilated cardiomyopathy in the phase 3 REALM-DCM trial. ESC Heart Fail 2024; 11:4201-4208. [PMID: 39145700 PMCID: PMC11631308 DOI: 10.1002/ehf2.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS LMNA-related dilated cardiomyopathy (DCM) is a rare disease with an incompletely defined phenotype. The phase 3 REALM-DCM trial evaluated a potential disease-modifying therapy for LMNA-related DCM but was terminated due to futility without safety concern. This study utilized pooled data from REALM-DCM to descriptively characterize the phenotype and progression of LMNA-related DCM in a contemporary cohort of patients using common heart failure (HF) measures. METHODS REALM-DCM enrolled patients with stable LMNA-related DCM, an implanted cardioverter defibrillator or cardiac resynchronization therapy defibrillator, and New York Heart Association (NYHA) Class II/III HF symptoms. RESULTS Between 2018 and 2022, 77 patients took part in REALM-DCM. The median patient age was 53 years (range: 23-72), and 57% were male. Overall, 88% of patients had a pathogenic or likely pathogenic LMNA variant, and 12% had a variant of uncertain significance with a concordant phenotype. Among patients with confirmed sequencing, 55% had a missense variant. Atrial fibrillation was present in 60% of patients; 79% of all patients had NYHA Class II and 21% had NYHA Class III HF symptoms at baseline. Median (range) left ventricular ejection fraction (LVEF), 6 min walk test (6MWT) distance, Kansas City Cardiomyopathy Questionnaire Overall Summary (KCCQ-OS) score and N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentration at baseline were 42% (23-62), 403 m (173-481), 67 (18-97) and 866 pg/mL (57-5248), respectively. LVEF, 6MWT distance and KCCQ-OS score were numerically lower in patients who had NYHA Class III versus II symptoms at baseline (LVEF: 38% vs. 43%; 6MWT distance: 326 vs. 413 m; and KCCQ-OS score: 43 vs. 70), whereas NT-proBNP concentration was higher (1216 vs. 799 pg/mL). Median follow-up was 73 weeks (range: 0.4-218; 73 in NYHA Class II and 75 in NYHA Class III). Patients displayed variable change from baseline in 6MWT, KCCQ-OS and NT-proBNP values during follow-up. Overall, 25% of patients experienced ventricular tachycardia, and 8% had ventricular fibrillation. Ten (13%) patients met the composite endpoint of worsening HF (adjudicated HF-related hospitalization or urgent care visit) or all-cause death; six had NYHA Class II and four had NYHA Class III at baseline. All-cause mortality occurred in 6 (8%) patients; three had NYHA Class II and three had NYHA Class III symptoms at baseline. CONCLUSIONS Findings confirm the significant morbidity and mortality associated with LMNA-related DCM despite the standard of care management. Typical measures of HF, including 6MWT distance, KCCQ-OS score and NT-proBNP concentration, were variable but correlated with NYHA class. An unmet treatment need remains among patients with LMNA-related DCM. NCT03439514.
Collapse
Affiliation(s)
- Pablo Garcia‐Pavia
- Hospital Universitario Puerta de Hierro MajadahondaMadridSpain
- Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)MadridSpain
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Universidad Francisco de Vitoria (UFV)MadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Neal K. Lakdawala
- Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI)University of TriesteTriesteItaly
| | - Tomas Ripoll‐Vera
- Hospital Universitario Son LlatzerMallorcaSpain
- Health Research Institute of the Balearic Islands (IdISBa)MallorcaSpain
- Department of MedicineUniversity of the Balearic IslandsMallorcaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn)Institute of Health Carlos IIIMadridSpain
| | - Kia Afshar
- Intermountain Heart InstituteSalt Lake CityUtahUSA
| | - Silvia G. Priori
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- IRCCS Istituti Clinici Scientifici Maugeri SpA SB of PaviaPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - James S. Ware
- National Heart & Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - Anjali Owens
- University of Pennsylvania Heart and Vascular CenterPhiladelphiaPennsylvaniaUSA
| | - Huihua Li
- Pfizer Inc.CollegevillePennsylvaniaUSA
| | | | | | - Calum A. MacRae
- Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Daniel P. Judge
- Cardiovascular GeneticsMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
7
|
Santos JL, Miranda JP, Lagos CF, Cortés VA. Case Report: Concurrent de novo pathogenic variants in the LMNA gene as a cause of sporadic partial lipodystrophy. Front Genet 2024; 15:1468878. [PMID: 39669119 PMCID: PMC11634843 DOI: 10.3389/fgene.2024.1468878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Inherited lipodystrophies are a group of rare diseases defined by severe reduction in adipose tissue mass and classified as generalized or partial. We report a non-familial (sporadic) case of partial lipodystrophy caused by a novel genetic mechanism involving closely linked de novo pathogenic variants in the LMNA gene. Methods A female adult with partial lipodystrophy and her parents were evaluated for gene variants across the exome under different mendelian inheritance models (autosomal dominant, recessive, compound heterozygous, and X-linked) to find pathogenic variants. Body composition was assessed via dual-energy X-ray absorptiometry (DXA). Results The patient showed absence of adipose tissue in the limbs; preservation of adiposity in the face, neck, and trunk; muscular hypertrophy, hypertriglyceridemia and insulin resistance. DXA revealed a fat mass of 15.4%, with android-to-gynoid ratio, trunk/limb, and trunk/leg ratios exceeding the published upper limits of 90% reference intervals. Two heterozygous missense de novo pathogenic variants in cis within the LMNA gene were found in the proband: p.Y481H and p.K486N (NP_733821.1). These variants have functional effects and were reported in inherited Emery-Dreifuss muscular dystrophy 2 (p.Y481H) and familial partial lipodystrophy type 2 (p.K486N). Molecular modeling analyses provided additional insights into the protein instability conferred by these variants in the lamin A/C Ig-like domain. Conclusion In a case of sporadic partial lipodystrophy, we describe two concurrent de novo pathogenic variants within the same gene (LMNA) as a novel pathogenic mechanism. This finding expands the genetic and phenotypic spectrum of partial lipodystrophy and laminopathy syndromes.
Collapse
Affiliation(s)
- José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Health Sciences, Institute for Sustainability and Food Chain Innovation (IS-FOOD), Public University of Navarre, Pamplona, Spain
| | - José Patricio Miranda
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Bupa Lab, Part of Bupa Chile, Santiago, Chile
| | - Carlos F. Lagos
- Chemical Biology and Drug Discovery Laboratory, Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia and Vida, Fundación Ciencia and Vida, Santiago, Chile
| | - Víctor A. Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Liu S, Liu D, Bender CM, Erickson KI, Sereika SM, Shaffer JR, Weeks DE, Conley YP. Associations between DNA methylation and cognitive function in early-stage hormone receptor-positive breast cancer patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.17.24317299. [PMID: 39606386 PMCID: PMC11601744 DOI: 10.1101/2024.11.17.24317299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Approximately one-third of breast cancer (BC) patients show poorer cognitive function (CF) before receiving adjuvant therapy compared with age-matched healthy controls. However, the biological mechanisms driving CF variation in the context of BC remain unclear. In this study, we aimed to identify genes and biological pathways associated with CF in postmenopausal women with early-stage hormone receptor-positive (HR+) BC using DNA methylation (DNAm) data, a dynamic regulator of gene activity. Methods Epigenome-wide association studies (EWAS) and differentially methylated region analyses were performed for each CF phenotype (seven objective domains and one subjective phenotype) using DNAm data from whole blood samples (n=109) taken at time of enrollment. Post-EWAS functional analyses were performed to enhance the understanding of the CF-related cytosine-phosphate-guanine (CpG) sites. Results When adjusting for age, verbal IQ scores, and global DNAm signature, cg10331779 near CTNND2 (p-value= 9.65 × 10 -9 ) and cg25906741 in MLIP (p-value= 2.01 × 10 -8 ) were associated with processing speed and subjective CF, respectively, while regions in/near SLC6A11 , PRKG1/CSTF2T , and FAM3B for processing speed, and regions in/near PI4KB and SGCE/PEG10 for mental flexibility were differentially methylated. In addition, beta-estradiol was identified as a common upstream regulator for all the CF phenotypes, suggesting an essential role of estrogen in explaining variation in CF of HR+ BC patients. Conclusions In our EWAS of 8 CF phenotypes, we found two epigenome-wide significant signals, one at cg10331779 near CTNND2 with processing speed and the other at cg25906741 in MLIP with subjective CF. We also found three differentially methylated regions associated with processing speed and two associated with mental flexibility. These findings need replication in larger cohorts.
Collapse
|
9
|
Di Lisi D, Macaione F, Damiani F, Ganci L, Mirabella M, Madaudo C, Galassi AR, Novo G. What happened to the left ventricular non-compaction cardiomyopathy? to be or not to be: This is the question. Curr Probl Cardiol 2024; 49:102787. [PMID: 39137881 DOI: 10.1016/j.cpcardiol.2024.102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
For several years, left ventricular non-compaction (LVNC) was considered as a true cardiomyopathy and several definitions have followed one another. Particularly, LVNC was characterized by prominent left ventricular trabeculae separated from deep intertrabecular recesses. Several echocardiographic criteria and cardiac magnetic resonance imaging (CMR) criteria have been used to diagnose LVNC, leading to overestimate the diagnosis of LVNC in patients with other diseases and/or physiological conditions. Left ventricular hypertrabeculation (LVH) can be present in several cardiac diseases and physiological conditions: heart failure with reduced ejection fraction, thalassemia and other hematological diseases, pregnancy, athlete's heart. Thus, the presence of LVH does not necessarily indicate the presence of an LVNC. In addition, the great heterogeneity of clinical manifestations has raised concerns regarding the existence of a true LVNC as a cardiomyopathy. In fact, LVNC ranges from genetic to acquired and even transient conditions, isolated forms or forms associated with other cardiomyopathies, congenital heart diseases or syndromes with a very different prognosis. Thus, considering LVH as a manifestation of various diseases and physiological conditions, the recent 2023 ESC guidelines on cardiomyopathies did not include LVNC among cardiomyopathies, but they suggested using the term "LVH" rather than LVNC, to describe this phenotype especially when it is transient or of adult-onset. In this review, we aimed to make an excursion on LVNC, from its initial description to the present day, to understand why current guidelines decided to consider LVH as a phenotypic trait rather than a distinct cardiomyopathy.
Collapse
Affiliation(s)
- Daniela Di Lisi
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Francesca Macaione
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Francesco Damiani
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Luca Ganci
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Marco Mirabella
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Cristina Madaudo
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Alfredo Ruggero Galassi
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppina Novo
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Ding R, Cao W, Chen Y, Zhu Y, Yin D. SnRNA-seq reveals differential functional transcriptional pathway alterations in three mutant types of dilated cardiomyopathy. Int J Biol Macromol 2024; 281:136353. [PMID: 39395510 DOI: 10.1016/j.ijbiomac.2024.136353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, characterized by ventricular dilation, thinning of the ventricular walls, and systolic dysfunction in either the left or both ventricles, often accompanied by fibrosis. Human cardiac tissue is composed of various cell types, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), macrophages, lymphocytes and so on. In DCM patients, these cells frequently undergo functional and phenotypic changes, contributing to contractile dysfunction, inflammation, fibrosis, and cell death, thereby increasing the risk of heart failure. This study focuses on DCM patients with mutations (LMNA, RBM20, and TTN) and analyzes functional changes in subpopulations of four cardiac cell types. The study involves functional annotation of subpopulations within each cell type and explores the association between gene mutations and specific functions and pathways. Additionally, the SCENIC method is employed of a particular cell subpopulation with significant functional importance, aiming to identify key transcriptional regulators in specific cell states. By analyzing the expression levels of ligand-receptor pairs in vCM4, vFB2, EC5.0, T cells, and NK cells across the DCM mutant genotypes, we predicted their signaling pathways and communications. This research provides insights into the molecular mechanisms of DCM and potential therapeutic targets.
Collapse
Affiliation(s)
- Rui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Wenzhao Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yongbo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yanrui Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Pavlov DA, Heffler J, Suay-Corredera C, Dehghany M, Shen KM, Zuela-Sopilniak N, Randell R, Uchida K, Jain R, Shenoy V, Lammerding J, Prosser B. Microtubule forces drive nuclear damage in LMNA cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579774. [PMID: 38948795 PMCID: PMC11212868 DOI: 10.1101/2024.02.10.579774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nuclear homeostasis requires a balance of forces between the cytoskeleton and nucleus. Mutations in the LMNA gene, which encodes the nuclear envelope proteins lamin A/C, disrupt this balance by weakening the nuclear lamina. This results in nuclear damage in contractile tissues and ultimately muscle disease. Intriguingly, disrupting the LINC complex that connects the cytoskeleton to the nucleus has emerged as a promising strategy to ameliorate LMNA-associated cardiomyopathy. Yet how LINC complex disruption protects the cardiomyocyte nucleus remains unclear. To address this, we developed an assay to quantify the coupling of cardiomyocyte contraction to nuclear deformation and interrogated its dependence on the nuclear lamina and LINC complex. We found that, surprisingly, the LINC complex was mostly dispensable for transferring contractile strain to the nucleus, and that increased nuclear strain in lamin A/C-deficient cardiomyocytes was not rescued by LINC complex disruption. Instead, LINC complex disruption eliminated the cage of microtubules encircling the nucleus. Disrupting microtubules was sufficient to prevent nuclear damage and rescue cardiac function induced by lamin A/C deficiency. We computationally simulated the stress fields surrounding cardiomyocyte nuclei and show how microtubule forces generate local vulnerabilities that damage lamin A/C-deficient nuclei. Our work pinpoints localized, microtubule-dependent force transmission through the LINC complex as a pathological driver and therapeutic target for LMNA-cardiomyopathy.
Collapse
Affiliation(s)
- Daria Amiad Pavlov
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Julie Heffler
- Weill Institute for Cell and Molecular Biology & Meinig School of Biomedical Engineering, Cornell University
| | - Carmen Suay-Corredera
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Mohammad Dehghany
- Department of Materials Science and Engineering, Center for Engineering Mechanobiology, University of Pennsylvania
| | - Kaitlyn M. Shen
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
| | - Noam Zuela-Sopilniak
- Weill Institute for Cell and Molecular Biology & Meinig School of Biomedical Engineering, Cornell University
| | - Rani Randell
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
| | - Vivek Shenoy
- Department of Materials Science and Engineering, Center for Engineering Mechanobiology, University of Pennsylvania
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology & Meinig School of Biomedical Engineering, Cornell University
| | - Benjamin Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
12
|
Liu CF, Tang WW. Targeting Mitochondria Dysfunction in LMNA Cardiomyopathy. JACC Basic Transl Sci 2024; 9:1231-1233. [PMID: 39534634 PMCID: PMC11551871 DOI: 10.1016/j.jacbts.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Patel R, Patel R, Patel E, Patel M. Dilated cardiomyopathy due to novel LMNA mutation: a case report. Front Cardiovasc Med 2024; 11:1422151. [PMID: 39411178 PMCID: PMC11473315 DOI: 10.3389/fcvm.2024.1422151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
A case of a 44-year-old man presenting with a family history of LMNA mutation and cardiac symptoms (dizziness, weakness, palpitations, and shortness of breath) congruent with dilated cardiomyopathy. Genetic testing revealed a novel likely pathogenic mutation of the LMNA gene (c.513G>A, exon 2) not previously associated with dilated cardiomyopathy, and the patient underwent guideline direct treatment for dilated cardiomyopathy. In patients with LMNA mutations, VTA risk should be calculated to determine the need for prophylactic ICD placement.
Collapse
Affiliation(s)
- Riddhi Patel
- Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Raj Patel
- Lake Erie College of Osteopathic Medicine, Greensburg, PA, United States
| | - Ekta Patel
- St. Bonaventure University, St. Bonaventure, NY, United States
| | - Mehul Patel
- Premier Medical Group—Cardiology Division, Newburgh, NY, United States
| |
Collapse
|
14
|
Bhide S, Chandran S, Rajasekaran NS, Melkani GC. Genetic and Pathophysiological Basis of Cardiac and Skeletal Muscle Laminopathies. Genes (Basel) 2024; 15:1095. [PMID: 39202453 PMCID: PMC11354015 DOI: 10.3390/genes15081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Shruti Bhide
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Sahaana Chandran
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Namakkal S. Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| | - Girish C. Melkani
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| |
Collapse
|
15
|
Chao T, Ge Y, Sun J, Wang C. Research landscape of genetics in dilated cardiomyopathy: insight from a bibliometric analysis. Front Cardiovasc Med 2024; 11:1362551. [PMID: 39070560 PMCID: PMC11272475 DOI: 10.3389/fcvm.2024.1362551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a heterogeneous myocardial disorder with diverse genetic or acquired origins. Notable advances have been achieved in discovering and understanding the genetics of DCM. This study aimed to depict the distribution of the main research forces, hotspots, and frontiers in the genetics of DCM, thus shaping future research directions. Methods Based on the documents published in the Web of Science Core Collection database from 2013 to 2022, co-authorship of authors, institutions, and countries/regions, co-citation of references, and co-occurrence of keywords were conducted respectively to present the distribution of the leading research forces, research hotspots, and emerging trends in the genetics of DCM. Results 4,141 documents were included, and the annual publications have steadily increased. Seidman, Christine E, Meder, Benjamin, Sinagra, Gianfranco were the most productive authors, German Centre for Cardiovascular Research was the most productive institution, and the USA, China, and Germany were the most prolific countries. The co-occurrence of keywords has generated 8 clusters, including DCM, lamin a/c, heart failure, sudden cardiac death, hypertrophic cardiomyopathy, cardiac hypertrophy, arrhythmogenic cardiomyopathy, and next-generation sequencing. Frequent keywords with average publication time after 2019 mainly included arrhythmogenic cardiomyopathy, whole-exome sequencing, RBM 20, phenotype, risk stratification, precision medicine, genotype, and machine learning. Conclusion The research landscape of genetics in DCM is continuously evolving. Deciphering the genetic profiles by next-generation sequencing and illustrating pathogenic mechanisms of gene variants, establishing innovative treatments for heart failure and improved risk stratification for SCD, uncovering the genetic overlaps between DCM and other inherited cardiomyopathies, as well as identifying genotype-phenotype correlations are the main research hotspots and frontiers in this field.
Collapse
Affiliation(s)
- Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- Community Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Garcia-Pavia P, Palomares JFR, Sinagra G, Barriales-Villa R, Lakdawala NK, Gottlieb RL, Goldberg RI, Elliott P, Lee P, Li H, Angeli FS, Judge DP, MacRae CA. REALM-DCM: A Phase 3, Multinational, Randomized, Placebo-Controlled Trial of ARRY-371797 in Patients With Symptomatic LMNA-Related Dilated Cardiomyopathy. Circ Heart Fail 2024; 17:e011548. [PMID: 38979608 PMCID: PMC11244753 DOI: 10.1161/circheartfailure.123.011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/16/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND LMNA (lamin A/C)-related dilated cardiomyopathy is a rare genetic cause of heart failure. In a phase 2 trial and long-term extension, the selective p38α MAPK (mitogen-activated protein kinase) inhibitor, ARRY-371797 (PF-07265803), was associated with an improved 6-minute walk test at 12 weeks, which was preserved over 144 weeks. METHODS REALM-DCM (NCT03439514) was a phase 3, randomized, double-blind, placebo-controlled trial in patients with symptomatic LMNA-related dilated cardiomyopathy. Patients with confirmed LMNA variants, New York Heart Association class II/III symptoms, left ventricular ejection fraction ≤50%, implanted cardioverter-defibrillator, and reduced 6-minute walk test distance were randomized to ARRY-371797 400 mg twice daily or placebo. The primary outcome was a change from baseline at week 24 in the 6-minute walk test distance using stratified Hodges-Lehmann estimation and the van Elteren test. Secondary outcomes using similar methodology included change from baseline at week 24 in the Kansas City Cardiomyopathy Questionnaire-physical limitation and total symptom scores, and NT-proBNP (N-terminal pro-B-type natriuretic peptide) concentration. Time to a composite outcome of worsening heart failure or all-cause mortality and overall survival were evaluated using Kaplan-Meier and Cox proportional hazards analyses. RESULTS REALM-DCM was terminated after a planned interim analysis suggested futility. Between April 2018 and October 2022, 77 patients (aged 23-72 years) received ARRY-371797 (n=40) or placebo (n=37). No significant differences (P>0.05) between groups were observed in the change from baseline at week 24 for all outcomes: 6-minute walk test distance (median difference, 4.9 m [95% CI, -24.2 to 34.1]; P=0.82); Kansas City Cardiomyopathy Questionnaire-physical limitation score (2.4 [95% CI, -6.4 to 11.2]; P=0.54); Kansas City Cardiomyopathy Questionnaire-total symptom score (5.3 [95% CI, -4.3 to 14.9]; P=0.48); and NT-proBNP concentration (-339.4 pg/mL [95% CI, -1131.6 to 452.7]; P=0.17). The composite outcome of worsening heart failure or all-cause mortality (hazard ratio, 0.43 [95% CI, 0.11-1.74]; P=0.23) and overall survival (hazard ratio, 1.19 [95% CI, 0.23-6.02]; P=0.84) were similar between groups. No new safety findings were observed. CONCLUSIONS Findings from REALM-DCM demonstrated futility without safety concerns. An unmet treatment need remains among patients with LMNA-related dilated cardiomyopathy. REGISTRATION URL: https://classic.clinicaltrials.gov; Unique Identifiers: NCT03439514, NCT02057341, and NCT02351856.
Collapse
Affiliation(s)
- Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, IDIPHISA, Universidad Francisco de Vitoria and Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (P.G.-P.)
| | - Jose Fernando Rodriguez Palomares
- Servicio de Cardiología, Hospital Universitario Vall Hebrón, Institut de Recerca Hospital Vall Hebrón, Universitat Autònoma de Barcelona, Spain (J.F.R.P.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.F.R.P.)
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina, University of Trieste, Italy (G.S.)
| | | | - Neal K. Lakdawala
- Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (N.K.L., C.A.M.R.)
| | - Robert L. Gottlieb
- Baylor Scott & White Research Institute, Dallas, TX (R.L.G.)
- Baylor University Medical Center, Dallas, TX (R.L.G.)
- Baylor Scott & White Heart and Vascular Hospital, Dallas, TX (R.L.G.)
| | | | | | | | - Huihua Li
- Pfizer Inc, Collegeville, PA (H.L., F.S.A.)
| | | | - Daniel P. Judge
- Medical University of South Carolina, Cardiovascular Genetics, Charleston (D.P.J.)
| | - Calum A. MacRae
- Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (N.K.L., C.A.M.R.)
| |
Collapse
|
17
|
Mukherjee N, Bolin EH, Qasim A, Orloff MS, Lupo PJ, Nembhard WN. DNA methylation of the Lamin A/C gene is associated with congenital heart disease. Birth Defects Res 2024; 116:e2381. [PMID: 39073036 DOI: 10.1002/bdr2.2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Prior studies report associations of maternal serum Lamin A, encoded by the LMNA gene, with fetal congenital heart disease (CHD). It is unknown whether DNA methylation (DNAm) of cytosine-phosphate-guanine (CpG) sites in LMNA impacts the CHD susceptibility. METHODS We investigated the associations of LMNA DNAm with CHD using publicly available data of CHD cases (n = 197) and controls (n = 134) from the Gene Expression Omnibus repository. Peripheral blood DNAm was measured using Illumina 850 K BeadChip for cases and 450 K BeadChip for controls. We tested 31 LMNA CpGs to identify differences in DNAm between cases and controls using linear regression correcting for multiple testing with false discovery rate (FDR). In a case-only analysis, we tested the variations in LMNA DNAm between CHD subtypes. To identify the consistency of DNAm across tissue types we compared peripheral blood (n = 197) and heart tissue DNAm (n = 20) in CHD cases. RESULTS After adjusting for age, sex, and cell types there were significant differences in 17 of the 31 LMNA CpGs between CHD cases and controls (FDR p ≤ .05). We identified lower DNAm of cg09820673 at 3' UTR for hypoplastic left heart syndrome compared to other CHD subtypes. Three CpGs exhibited uniform DNAm in blood and heart tissues in cases. Eleven CpGs showed changes in the same direction in blood and heart tissues in cases compared to controls. CONCLUSION We identify statistically significant differences in LMNA DNAm between CHD cases and controls. Future studies should investigate the role of maternal LMNA DNAm in CHD development.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elijah H Bolin
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Amna Qasim
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Mohammed S Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy N Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
18
|
Forleo C, Carella MC, Basile P, Carulli E, Dadamo ML, Amati F, Loizzi F, Sorrentino S, Dentamaro I, Dicorato MM, Ricci S, Bagnulo R, Iacoviello M, Santobuono VE, Caiati C, Pepe M, Desaphy JF, Ciccone MM, Resta N, Guaricci AI. Missense and Non-Missense Lamin A/C Gene Mutations Are Similarly Associated with Major Arrhythmic Cardiac Events: A 20-Year Single-Centre Experience. Biomedicines 2024; 12:1293. [PMID: 38927500 PMCID: PMC11201013 DOI: 10.3390/biomedicines12061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Arrhythmic risk stratification in patients with Lamin A/C gene (LMNA)-related cardiomyopathy influences clinical decisions. An implantable cardioverter defibrillator (ICD) should be considered in patients with an estimated 5-year risk of malignant ventricular arrhythmia (MVA) of ≥10%. The risk prediction score for MVA includes non-missense LMNA mutations, despite their role as an established risk factor for sudden cardiac death (SCD) has been questioned in several studies. The purpose of this study is to investigate cardiac features and find gene-phenotype correlations that would contribute to the evidence on the prognostic implications of non-missense vs. missense mutations in a cohort of LMNA mutant patients. An observational, prospective study was conducted in which 54 patients positive for a Lamin A/C mutation were enrolled, and 20 probands (37%) were included. The median age at first clinical manifestation was 41 (IQR 19) years. The median follow-up was 8 years (IQR 8). The type of LMNA gene mutation was distributed as follows: missense in 26 patients (48%), non-frameshift insertions in 16 (30%), frameshift deletions in 5 (9%), and nonsense in 7 (13%). Among the missense mutation carriers, two (8%) died and four (15%) were admitted onto the heart transplant list or underwent transplantation, with a major adverse cardiovascular event (MACE) rate of 35%. No statistically significant differences in MACE prevalence were identified according to the missense and non-missense mutation groups (p value = 0.847). Our data shift the spotlight on this considerable topic and could suggest that some missense mutations may deserve attention regarding SCD risk stratification in real-world clinical settings.
Collapse
Affiliation(s)
- Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Maria Cristina Carella
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
- Internal Medicine Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Paolo Basile
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
- Internal Medicine Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Eugenio Carulli
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
- Internal Medicine Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Luca Dadamo
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Francesca Amati
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Francesco Loizzi
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Sandro Sorrentino
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Ilaria Dentamaro
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Marco Maria Dicorato
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Stefano Ricci
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Rosanna Bagnulo
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (R.B.); (M.I.); (N.R.)
| | - Matteo Iacoviello
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (R.B.); (M.I.); (N.R.)
| | - Vincenzo Ezio Santobuono
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Carlo Caiati
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Martino Pepe
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Jean-Francois Desaphy
- Pharmacology Unit, Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (R.B.); (M.I.); (N.R.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, University Hospital Consortium Polyclinic of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.C.); (P.B.); (E.C.); (M.L.D.); (F.A.); (F.L.); (S.S.); (I.D.); (M.M.D.); (S.R.); (V.E.S.); (C.C.); (M.P.); (M.M.C.); (A.I.G.)
| |
Collapse
|
19
|
Pan SW, Wang HD, Hsiao HY, Hsu PJ, Tseng YC, Liang WC, Jong YJ, Yuh CH. Creatine and L-carnitine attenuate muscular laminopathy in the LMNA mutation transgenic zebrafish. Sci Rep 2024; 14:12826. [PMID: 38834813 PMCID: PMC11150447 DOI: 10.1038/s41598-024-63711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Lamin A/C gene (LMNA) mutations contribute to severe striated muscle laminopathies, affecting cardiac and skeletal muscles, with limited treatment options. In this study, we delve into the investigations of five distinct LMNA mutations, including three novel variants and two pathogenic variants identified in patients with muscular laminopathy. Our approach employs zebrafish models to comprehensively study these variants. Transgenic zebrafish expressing wild-type LMNA and each mutation undergo extensive morphological profiling, swimming behavior assessments, muscle endurance evaluations, heartbeat measurement, and histopathological analysis of skeletal muscles. Additionally, these models serve as platform for focused drug screening. We explore the transcriptomic landscape through qPCR and RNAseq to unveil altered gene expression profiles in muscle tissues. Larvae of LMNA(L35P), LMNA(E358K), and LMNA(R453W) transgenic fish exhibit reduced swim speed compared to LMNA(WT) measured by DanioVision. All LMNA transgenic adult fish exhibit reduced swim speed compared to LMNA(WT) in T-maze. Moreover, all LMNA transgenic adult fish, except LMNA(E358K), display weaker muscle endurance than LMNA(WT) measured by swimming tunnel. Histochemical staining reveals decreased fiber size in all LMNA mutations transgenic fish, excluding LMNA(WT) fish. Interestingly, LMNA(A539V) and LMNA(E358K) exhibited elevated heartbeats. We recognize potential limitations with transgene overexpression and conducted association calculations to explore its effects on zebrafish phenotypes. Our results suggest lamin A/C overexpression may not directly impact mutant phenotypes, such as impaired swim speed, increased heart rates, or decreased muscle fiber diameter. Utilizing LMNA zebrafish models for drug screening, we identify L-carnitine treatment rescuing muscle endurance in LMNA(L35P) and creatine treatment reversing muscle endurance in LMNA(R453W) zebrafish models. Creatine activates AMPK and mTOR pathways, improving muscle endurance and swim speed in LMNA(R453W) fish. Transcriptomic profiling reveals upstream regulators and affected genes contributing to motor dysfunction, cardiac anomalies, and ion flux dysregulation in LMNA mutant transgenic fish. These findings faithfully mimic clinical manifestations of muscular laminopathies, including dysmorphism, early mortality, decreased fiber size, and muscle dysfunction in zebrafish. Furthermore, our drug screening results suggest L-carnitine and creatine treatments as potential rescuers of muscle endurance in LMNA(L35P) and LMNA(R453W) zebrafish models. Our study offers valuable insights into the future development of potential treatments for LMNA-related muscular laminopathy.
Collapse
Affiliation(s)
- Shao-Wei Pan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - He-Yun Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Jui Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Nursing, MacKay Medical College, Taipei, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organism Biology, Academia Sinica, I-Lan, Taiwan
| | - Wen-Chen Liang
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Vlay SC. Cold case files: A tale of three sisters - solved by genetic testing with implications for LMNA cardiomyopathy. Pacing Clin Electrophysiol 2024; 47:711-713. [PMID: 38850393 DOI: 10.1111/pace.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Stephen C Vlay
- Division of Cardiology, Department of Medicine, SUNY Health Sciences Center, Stony Brook, New York, USA
| |
Collapse
|
21
|
Aschner A, Keller A, Williams A, Whitney R, Cunningham K, Hamilton RM, Pollanen M, Donner E. Cardiac arrhythmia and epilepsy genetic variants in sudden unexpected death in epilepsy. Front Neurol 2024; 15:1386730. [PMID: 38756210 PMCID: PMC11097959 DOI: 10.3389/fneur.2024.1386730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Sudden Unexpected Death in Epilepsy (SUDEP) is the leading epilepsy-related cause of death, affecting approximately 1 per 1,000 individuals with epilepsy per year. Genetic variants that affect autonomic function, such as genes associated with cardiac arrhythmias, may predispose people with epilepsy to greater risk of both sudden cardiac death and SUDEP. Advances in next generation sequencing allow for the exploration of gene variants as potential biomarkers. Methods Genetic testing for the presence of cardiac arrhythmia and epilepsy gene variants was performed via genetic panels in 39 cases of SUDEP identified via autopsy by the Ontario Forensic Pathology Service. Variants were summarized by in-silico evidence for pathogenicity from 4 algorithms (SIFT, PolyPhen-2, PROVEAN, Mutation Taster) and allele frequencies in the general population (GnomAD). A maximum credible population allele frequency of 0.00004 was calculated based on epilepsy prevalence and SUDEP incidence to assess whether a variant was compatible with a pathogenic interpretation. Results Median age at the time of death was 33.3 years (range: 2, 60). Fifty-nine percent (n=23) were male. Gene panels detected 62 unique variants in 45 genes: 19 on the arrhythmia panel and 26 on the epilepsy panel. At least one variant was identified in 28 (72%) of decedents. Missense mutations comprised 57 (92%) of the observed variants. At least three in silico models predicted 12 (46%) cardiac arrhythmia panel missense variants and 20 (65%) epilepsy panel missense variants were pathogenic. Population allele frequencies were <0.00004 for 11 (42%) of the cardiac variants and 10 (32%) of the epilepsy variants. Together, these metrics identified 13 SUDEP variants of interest. Discussion Nearly three-quarters of decedents in this SUDEP cohort carried variants in comprehensive epilepsy or cardiac arrhythmia gene panels, with more than a third having variants in both panels. The proportion of decedents with cardiac variants aligns with recent studies of the disproportionate cardiac burden the epilepsy community faces compared to the general population and suggests a possible cardiac contribution to epilepsy mortality. These results identified 13 priority targets for future functional studies of these genes potential role in sudden death and demonstrates the necessity for further exploration of potential genetic contributions to SUDEP.
Collapse
Affiliation(s)
- Amir Aschner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anne Keller
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Andrew Williams
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robyn Whitney
- McMaster Children’s Hospital, McMaster University, Hamilton, ON, Canada
| | - Kris Cunningham
- Department of Pathology and Molecular Medicine, School of Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Robert M. Hamilton
- Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael Pollanen
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Mohar NP, Cox EM, Adelizzi E, Moore SA, Mathews KD, Darbro BW, Wallrath LL. The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease. Int J Mol Sci 2024; 25:4930. [PMID: 38732148 PMCID: PMC11084688 DOI: 10.3390/ijms25094930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Efrem M. Cox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
- Department of Neurosurgery, UNLV School of Medicine, Las Vegas, NV 89106, USA
| | - Emily Adelizzi
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
| | - Katherine D. Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Dangoni GD, Teixeira ACB, da Costa SS, Scliar MO, Carvalho LML, Silva LN, Novak EM, Vince CSC, Maschietto MC, Sugayama SMM, Odone-Filho V, Krepischi ACV. Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies. Pediatr Res 2024; 95:1346-1355. [PMID: 38182823 DOI: 10.1038/s41390-023-03000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.
Collapse
Affiliation(s)
- Gustavo D Dangoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anne Caroline B Teixeira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia S da Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Laura M L Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana N Silva
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Estela M Novak
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Sofia M M Sugayama
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Vicente Odone-Filho
- Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina V Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Luo X, Jia H, Wang F, Mo H, Kang Y, Zhang N, Zhao L, Xu L, Yang Z, Yang Q, Chang Y, Li S, Bian N, Hua X, Cui H, Cao Y, Chu C, Zeng Y, Chen X, Chen Z, Ji W, Long C, Song J, Niu Y. Primate Model Carrying LMNA Mutation Develops Dilated Cardiomyopathy. JACC Basic Transl Sci 2024; 9:380-395. [PMID: 38559624 PMCID: PMC10978409 DOI: 10.1016/j.jacbts.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024]
Abstract
To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Han Mo
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chu Chu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuqiang Zeng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhigang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengzu Long
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Arabia G, Bellicini MG, Cersosimo A, Memo M, Mazzarotto F, Inciardi RM, Cerini M, Chen LY, Aboelhassan M, Benzoni P, Mitacchione G, Bontempi L, Curnis A. Ion channel dysfunction and fibrosis in atrial fibrillation: Two sides of the same coin. Pacing Clin Electrophysiol 2024; 47:417-428. [PMID: 38375940 DOI: 10.1111/pace.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common heart rhythm disorder that is associated with an increased risk of stroke and heart failure (HF). Initially, an association between AF and ion channel dysfunction was identified, classifying the pathology as a predominantly electrical disease. More recently it has been recognized that fibrosis and structural atrial remodeling play a driving role in the development of this arrhythmia also in these cases. PURPOSE Understanding the role of fibrosis in genetic determined AF could be important to better comprise the pathophysiology of this arrhythmia and to refine its management also in nongenetic forms. In this review we analyze genetic and epigenetic mechanisms responsible for AF and their link with atrial fibrosis, then we will consider analogies with the pathophysiological mechanism in nongenetic AF, and discuss consequent therapeutic options.
Collapse
Affiliation(s)
- Gianmarco Arabia
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Angelica Cersosimo
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London (F.M., J. Ware), London, UK
| | | | - Manuel Cerini
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
| | - Lin Yee Chen
- University of Minnesota (L.Y.C.), Minneapolis, USA
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Luca Bontempi
- Unit of Cardiology, Cardiac Electrophysiology and, Electrostimulation Laboratory, "Bolognini" Hospital of Seriate - ASST Bergamo Est, Bergamo, Italy
| | - Antonio Curnis
- Cardiology Department, Spedali Civili Hospital, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Chen Y, Cai WK, Yu J, Shen M, Zhou JH, Yang SY, Liu W, Lu S, Shi YK, Yang LX. Integrated analysis of differentially expressed genes and miRNA expression profiles in dilated cardiomyopathy. Heliyon 2024; 10:e25569. [PMID: 38384527 PMCID: PMC10878877 DOI: 10.1016/j.heliyon.2024.e25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background Although dilated cardiomyopathy (DCM) is a prevalent form of cardiomyopathy, the molecular mechanisms underlying its pathogenesis and progression remain poorly understood. It is possible to identify and validate DCM-associated genes, pathways, and miRNAs using bioinformatics analysis coupled with clinical validation methods. Methods Our analysis was performed using 3 mRNA datasets and 1 miRNA database. We employed several approaches, including gene ontology (GO) analysis, KEGG pathway enrichment analysis, protein-protein interaction networks analysis, and analysis of hub genes to identify critical genes and pathways linked to DCM. We constructed a regulatory network for DCM that involves interactions between miRNAs and mRNAs. We also validated the differently expressed miRNAs in clinical samples (87 DCM ,83 Normal) using qRT-PCR.The miRNAs' clinical value was evaluated by receiver operating characteristic curves (ROCs). Results 78 differentially expressed genes (DEGs) and 170 differentially expressed miRNAs (DEMs) were associated with DCM. The top five GO annotations were collagen-containing extracellular matrix, cell substrate adhesion, negative regulation of cell differentiation, and inflammatory response. The most enriched KEGG pathways were the Neurotrophin signaling pathway, Thyroid hormone signaling pathway, Wnt signaling pathway, and Axon guidance. In the PPI network, we identified 10 hub genes, and in the miRNA-mRNA regulatory network, we identified 8 hub genes and 15 miRNAs. In the clinical validation, we found 13 miRNAs with an AUC value greater than 0.9. Conclusion Our research offers novel insights into the underlying mechanisms of DCM and has implications for identifying potential targets for diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Wen-Ke Cai
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Ming Shen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jin-Huan Zhou
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Sheng-Yu Yang
- Department of Urology Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Wei Liu
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Si Lu
- Department of Clinical Medical College, Dali University, Dali, China
| | - Yan-Kun Shi
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Li-Xia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| |
Collapse
|
27
|
Voinescu OR, Ionescu BI, Militaru S, Afana AS, Sascau R, Vasiliu L, Onciul S, Dobrescu MA, Cozlac RA, Cozma D, Rancea R, Dragulescu B, Andreescu NI, Puiu M, Jurcut RO, Chirita-Emandi A. Genetic Characterization of Dilated Cardiomyopathy in Romanian Adult Patients. Int J Mol Sci 2024; 25:2562. [PMID: 38473809 DOI: 10.3390/ijms25052562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Dilated cardiomyopathy (DCM) represents a group of disorders affecting the structure and function of the heart muscle, leading to a high risk of heart failure and sudden cardiac death (SCD). DCM frequently involves an underlying genetic etiology. Genetic testing is valuable for risk stratification, treatment decisions, and family screening. Romanian population data on the genetic etiology of DCM are lacking. We aimed to investigate the genetic causes for DCM among Romanian adult patients at tertiary referral centers across the country. Clinical and genetic investigations were performed on adult patients presenting to tertiary hospitals in Romania. The genetic investigations used next-generation sequencing panels of disease-associated DCM genes. A total of 122 patients with DCM underwent genetic testing. The mean age at DCM diagnosis was 41.6 ± 12.4 years. The genetic investigations identified pathogenic or likely pathogenic variants in 50.8% of participants, while 25.4% had variants of unknown significance. Disease-causing variants in 15 genes were identified in people with DCM, with 31 previously unreported variants. Variants in TTN, LMNA, and DSP explained 75% of genetic causes for DCM. In total, 52.4% of patients had a family history of DCM/SCD. Left ventricular ejection fraction of <35% was observed in 41.9% of patients with disease-causing variants and 55% with negative or uncertain findings. Further genotype-phenotype correlations were explored in this study population. The substantial percentage (50.8%) of disease-causing variants identified in patients with DCM acknowledges the importance of genetic investigations. This study highlights the genetic landscape in genes associated with DCM in the Romanian population.
Collapse
Affiliation(s)
- Oana Raluca Voinescu
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
| | - Bogdana Ioana Ionescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases 'Prof.dr.C.C.Iliescu', Fundeni 258, 022328 Bucharest, Romania
| | - Sebastian Militaru
- Department of Cardiology, Craiova University of Medicine and Pharmacy, Petru Rareș Street no 2, 200349 Craiova, Romania
- Cardiomed Hospital, Craiova, Str. Spania, Nr. 35A, 200513 Craiova, Romania
| | - Andreea Sorina Afana
- Department of Cardiology, Craiova University of Medicine and Pharmacy, Petru Rareș Street no 2, 200349 Craiova, Romania
- Cardiomed Hospital, Craiova, Str. Spania, Nr. 35A, 200513 Craiova, Romania
| | - Radu Sascau
- Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700503 Iași, Romania
- Cardiology Department, Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu", 50 Boulevard Carol I, 700503 Iași, Romania
| | - Laura Vasiliu
- Internal Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700503 Iași, Romania
- Cardiology Department, Cardiovascular Diseases Institute "Prof. Dr. George I. M. Georgescu", 50 Boulevard Carol I, 700503 Iași, Romania
| | - Sebastian Onciul
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
| | - Mihaela Amelia Dobrescu
- Genetics Department, Craiova University of Medicine and Pharmacy, Petru Rareș 2 Street, 200349 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
| | - Ramona Alina Cozlac
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
- Cardiology Department, Institute of Cardiovascular Diseases, Gheorghe Adam Street, 13A, 300310 Timișoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Cardiology Discipline II, University of Medicine and Pharmacy "Victor Babeș", Eftimie Murgu Sq., 300041 Timișoara, Romania
- Cardiology Department, Institute of Cardiovascular Diseases, Gheorghe Adam Street, 13A, 300310 Timișoara, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Bogdan Dragulescu
- Communications Department, Politehnica University Timisoara, sq Victoriei 2, 300006 Timișoara, Romania
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| | - Ruxandra Oana Jurcut
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila', Dionisie Lupu Street, no. 37, Sector 2, 4192910 Bucharest, Romania
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases 'Prof.dr.C.C.Iliescu', Fundeni 258, 022328 Bucharest, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babeș" Timișoara, 2 Piaţa Eftimie Murgu Street, 300041 Timişoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children "Louis Țurcanu" Iosif Nemoianu Street N°2, 300011 Timișoara, Romania
| |
Collapse
|
28
|
Zeylan M, Senyuz S, Picón-Pagès P, García-Elías A, Tajes M, Muñoz FJ, Oliva B, Garcia-Ojalvo J, Barbu E, Vicente R, Nattel S, Ois A, Puig-Pijoan A, Keskin O, Gursoy A. Shared Proteins and Pathways of Cardiovascular and Cognitive Diseases: Relation to Vascular Cognitive Impairment. J Proteome Res 2024; 23:560-573. [PMID: 38252700 PMCID: PMC10846560 DOI: 10.1021/acs.jproteome.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research. Here, we applied computational approaches like systems biology to unveil and select relevant proteins and pathways related to VCI by studying the crosstalk between cardiovascular and cognitive diseases. In addition, we specifically included signals related to oxidative stress, a common etiologic factor tightly linked to aging, a major determinant of VCI. Our results show that pathways associated with oxidative stress are quite relevant, as most of the prioritized vascular cognitive genes and proteins were enriched in these pathways. Our analysis provided a short list of proteins that could be contributing to VCI: DOLK, TSC1, ATP1A1, MAPK14, YWHAZ, CREB3, HSPB1, PRDX6, and LMNA. Moreover, our experimental results suggest a high implication of glycative stress, generating oxidative processes and post-translational protein modifications through advanced glycation end-products (AGEs). We propose that these products interact with their specific receptors (RAGE) and Notch signaling to contribute to the etiology of VCI.
Collapse
Affiliation(s)
- Melisa
E. Zeylan
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Simge Senyuz
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Pol Picón-Pagès
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Anna García-Elías
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Marta Tajes
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Francisco J. Muñoz
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Baldomero Oliva
- Laboratory
of Structural Bioinformatics (GRIB), Department of Medicine and Life
Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Jordi Garcia-Ojalvo
- Laboratory
of Dynamical Systems Biology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Eduard Barbu
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Raul Vicente
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Stanley Nattel
- Department
of Medicine and Research Center, Montreal Heart Institute and Université
de Montréal; Institute of Pharmacology, West German Heart and
Vascular Center, University Duisburg-Essen,
Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux 33000, France
| | - Angel Ois
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Albert Puig-Pijoan
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ozlem Keskin
- Department
of Chemical and Biological Engineering, Koç University, Istanbul 34450, Türkiye
| | - Attila Gursoy
- Department
of Computer Engineering, Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
29
|
Valayer S, Hickman G, Petit A, Solal MC, De Sandre Giovannoli A, Bourrat E. Acrogeria, an exceptional cause of acro-osteolysis. Clin Exp Dermatol 2024; 49:206-208. [PMID: 37889144 DOI: 10.1093/ced/llad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
This case report presents a previously unreported mutation in the LMNA gene associated with acrogeria, highlighting a distinct entity within the spectrum of laminopathies. Considering acrogeria as a potential diagnosis should be taken into account for patients with early-onset acro-osteolysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuelle Bourrat
- Department of Dermatology
- CRMR MAGEC Paris Nord, Saint Louis Hospital, Paris, France
| |
Collapse
|
30
|
Wilke MVMB, Wick M, Schwab TL, Starosta RT, Clark KJ, Connolly HM, Klee EW. Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome. Genes (Basel) 2024; 15:112. [PMID: 38255001 PMCID: PMC10815864 DOI: 10.3390/genes15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The LMNA gene encodes lamin A and lamin C, which play important roles in nuclear organization. Pathogenic variants in LMNA cause laminopathies, a group of disorders with diverse phenotypes. There are two main groups of disease-causing variants: missense variants affecting dimerization and intermolecular interactions, and heterozygous substitutions activating cryptic splice sites. These variants lead to different disorders, such as dilated cardiomyopathy and Hutchinson-Gilford progeria (HGP). Among these, the phenotypic terms for LMNA-associated cardiocutaneous progeria syndrome (LCPS), which does not alter lamin A processing and has an older age of onset, have been described. Here, we present the workup of an LMNA variant of uncertain significance, NM_170707.2 c. 4G>A, p.(Glu2Lys), in a 36-year-old female with severe calcific aortic stenosis, a calcified mitral valve, premature aging, and a family history of similar symptoms. Due to the uncertainty of in silico predictions for this variant, an assessment of nuclear morphology was performed using the immunocytochemistry of stable cell lines to indicate whether the p.(Glu2Lys) had a similar pathogenic mechanism as a previously described pathogenic variant associated with LCPS, p.Asp300Gly. Indirect immunofluorescence analysis of nuclei from stable cell lines showed abnormal morphology, including lobulation and occasional ringed nuclei. Relative to the controls, p.Glu2Lys and p.Asp300Gly nuclei had significantly (p < 0.001) smaller average nuclear areas than controls (mean = 0.10 units, SD = 0.06 for p.Glu2Lys; and mean = 0.09 units, SD = 0.05 for p.Asp300Gly versus mean = 0.12, SD = 0.05 for WT). After functional studies and segregation studies, this variant was upgraded to likely pathogenic. In summary, our findings suggest that p.Glu2Lys impacts nuclear morphology in a manner comparable to what was observed in p.Asp300Gly cells, indicating that the variant is the likely cause of the LCPS segregating within this family.
Collapse
Affiliation(s)
| | - Myra Wick
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Tanya L. Schwab
- Department of Molecular Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodrigo Tzovenos Starosta
- Division of Medical Genetics and Genomics, Washington University in Saint Louis, Saint Louis, MO 63130, USA;
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Karl J. Clark
- Department of Biochemical and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Rosario KF, Karra R, Amos K, Landstrom AP, Lakdawala NK, Brezitski K, Kim H, Devore AD. LMNA Cardiomyopathy: Important Considerations for the Heart Failure Clinician. J Card Fail 2023; 29:1657-1666. [PMID: 37659618 DOI: 10.1016/j.cardfail.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND A diagnosis of Lamin proteins A and C cardiomyopathy (LMNA-CM) not only impacts disease prognosis, but also leads to specific guideline-recommended treatment options for these patients. This etiology is fundamentally different from other genetic causes of dilated CM. METHODS AND RESULTS LMNA-CM often presents early in the third to fourth decades and there is an age-dependent penetrance of nearly 90% among those with a positive genotype for LMNA-CM. Oftentimes, electrical abnormalities with either conduction disturbances and/or either atrial or ventricular arrhythmias manifest before there is imaging evidence of left ventricular dysfunction. Given these subtle early findings, cardiac magnetic resonance provides helpful guidance regarding patterns of enhancement associated with LMNA-CM, often before there is significant left ventricular dilation and/or a decrease in the ejection fraction and could be used for further understanding of risk stratification and prognosis of asymptomatic genotype-positive individuals. Among symptomatic patients with LMNA-CM, approximately one-quarter of individuals progress to needing advanced heart failure therapies such as heart transplantation. CONCLUSIONS In the era of precision medicine, increased recognition of clinical findings associated with LMNA-CM and increased detection by genetic testing among patients with idiopathic nonischemic CM is of increasing importance. Not only does a diagnosis of LMNA-CM have implications for management and risk stratification, but new gene-based therapies continue to be evaluated for this group. Clinicians must be aware not only of the general indications for genetic testing in arrhythmogenic and dilated cardiomyopathies and of when to suspect LMNA-CM, but also of the clinical trials underway targeted toward the different genetic cardiomyopathies.
Collapse
Affiliation(s)
| | - Ravi Karra
- Duke University Medical Center, Durham, North Carolina
| | - Kaitlyn Amos
- Duke University Medical Center, Durham, North Carolina
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kyla Brezitski
- Duke University School of Medicine, Durham, North Carolina
| | - Han Kim
- Duke University Medical Center, Durham, North Carolina
| | - Adam D Devore
- Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
32
|
Iavarone M, Covino S, Petillo R, Russo V. Interatrial block as a first clinical presentation of atrial cardiomyopathy related to a novel LMNA variant: a case report. Eur Heart J Case Rep 2023; 7:ytad532. [PMID: 38130860 PMCID: PMC10733185 DOI: 10.1093/ehjcr/ytad532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
Background Interatrial block (IAB) is a conduction delay in Bachmann's bundle with a well-described association with structural heart disease, supraventricular arrhythmias, and cardiovascular events. Case summary We report the case of an asymptomatic 35-year-old man in whom the presence of IAB at electrocardiogram led to a comprehensive evaluation including speckle-tracking echocardiography, 24 h Holter monitoring, and genetic testing. Speckle-tracking echocardiography demonstrated a decrease in the longitudinal strain of interventricular septum, a typical feature of LMNA-related cardiomyopathy, and decreased indices of left atrial deformation. A diagnosis of cardiac laminopathy related to the frame shift variant c.1367 (p.Asn456Thrfs*24) of the LMNA gene was made. A dual-chamber implantable cardioverter defibrillator implantation was performed for the high risk of life-threatening ventricular tachyarrhythmias. Discussion This case demonstrates that IAB could be a rare presentation of a life-threatening laminopathy. Strain echocardiography is an essential tool to evaluate the deposition of fibrosis tissue in subclinical cardiomyopathies. Our report describes a novel variant of LMNA gene associated with a high risk of sudden cardiac death.
Collapse
Affiliation(s)
- Michele Iavarone
- Cardiology Unit, Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli’, AORN Ospedali dei Colli Monaldi Hospital, Via L. Bianchi 1 c/o Monaldi Hospital, AORN Colli, Naples 80131, Italy
| | - Simona Covino
- Cardiology Unit, Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli’, AORN Ospedali dei Colli Monaldi Hospital, Via L. Bianchi 1 c/o Monaldi Hospital, AORN Colli, Naples 80131, Italy
| | - Roberta Petillo
- Medical and Laboratory Genetics Unit, A.O.R.N. ‘Antonio Cardarelli’, Naples 80131, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Translational Medical Sciences, University of Campania ‘Luigi Vanvitelli’, AORN Ospedali dei Colli Monaldi Hospital, Via L. Bianchi 1 c/o Monaldi Hospital, AORN Colli, Naples 80131, Italy
| |
Collapse
|
33
|
Bannasch DL, Oertle DT, Vo J, Batcher KL, Stern JA, Kaplan JL, Li RHL, Madden IE, Christen M, Leeb T, Joshi N. Naturally occurring canine laminopathy leading to a dilated and fibrosing cardiomyopathy in the Nova Scotia Duck Tolling Retriever. Sci Rep 2023; 13:19077. [PMID: 37925523 PMCID: PMC10625583 DOI: 10.1038/s41598-023-46601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by decreased systolic function and dilation of one or both ventricles, often leading to heart failure or sudden death. Two 10-month-old sibling Nova Scotia Duck Tolling Retrievers (NSDTR) died acutely with evidence of dilated cardiomyopathy with myocardial fibrosis. Association analysis using two cases and 35 controls identified three candidate regions homozygous in the two cases. Whole genome sequencing identified a frameshift deletion in the LMNA gene (NC_049228.1:g.41688530del, NP_001274080:p.(Asp576ThrfsTer124)). Three retrospectively identified NSDTRs with sudden death before 2 years of age and severe myocardial fibrosis were also homozygous for the deletion. One 5 year old with sudden death and myocardial fibrosis was heterozygous for the deletion. This variant was not identified in 722 dogs of other breeds, nor was it identified to be homozygous in 784 NSDTR. LMNA codes for lamin A/C proteins, which are type V intermediate filaments that provide structural support to the nuclear membrane. In humans, LMNA variants can cause DCM with sudden death as well as diseases of striated muscles, lipodystrophy, neuropathies, and accelerated aging disorders. This frameshift deletion is predicted to affect processing of prelamin A into lamin A. Pedigree analysis in the NSDTR and functional evaluation of heterozygotes is consistent with a predominantly recessive mode of inheritance and possibly low penetrance in heterozygotes in contrast to people, where most pathogenic LMNA variants are dominantly inherited.
Collapse
Affiliation(s)
- Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Danielle T Oertle
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Julia Vo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Ronald H L Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Indiana E Madden
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Nikhil Joshi
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Jebane C, Varlet AA, Karnat M, Hernandez- Cedillo LM, Lecchi A, Bedu F, Desgrouas C, Vigouroux C, Vantyghem MC, Viallat A, Rupprecht JF, Helfer E, Badens C. Enhanced cell viscosity: A new phenotype associated with lamin A/C alterations. iScience 2023; 26:107714. [PMID: 37701573 PMCID: PMC10494210 DOI: 10.1016/j.isci.2023.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Lamin A/C is a well-established key contributor to nuclear stiffness and its role in nucleus mechanical properties has been extensively studied. However, its impact on whole-cell mechanics has been poorly addressed, particularly concerning measurable physical parameters. In this study, we combined microfluidic experiments with theoretical analyses to quantitatively estimate the whole-cell mechanical properties. This allowed us to characterize the mechanical changes induced in cells by lamin A/C alterations and prelamin A accumulation resulting from atazanavir treatment or lipodystrophy-associated LMNA R482W pathogenic variant. Our results reveal a distinctive increase in long-time viscosity as a signature of cells affected by lamin A/C alterations. Furthermore, they show that the whole-cell response to mechanical stress is driven not only by the nucleus but also by the nucleo-cytoskeleton links and the microtubule network. The enhanced cell viscosity assessed with our microfluidic assay could serve as a valuable diagnosis marker for lamin-related diseases.
Collapse
Affiliation(s)
- Cécile Jebane
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | | | - Marc Karnat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France
| | | | | | | | | | - Corinne Vigouroux
- Assistance Publique–Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, National Reference Centre for Rares diseases of Insulin-Secretion and Insulin-Sensitivity (PRISIS), Department of Endocrinology, Paris, France
- Sorbonne University, Saint-Antoine Research Centre, Inserm UMR_S938, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology and Metabolism Department, Inserm U1190, EGID, Lille University Hospital, Lille, France
| | - Annie Viallat
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems, Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille Univ, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- AP-HM, Laboratoire de Biochimie, Marseille, France
| |
Collapse
|
35
|
Tan CY, Chan PS, Tan H, Tan SW, Lee CJM, Wang JW, Ye S, Werner H, Loh YJ, Lee YL, Ackers-Johnson M, Foo RSY, Jiang J. Systematic in vivo candidate evaluation uncovers therapeutic targets for LMNA dilated cardiomyopathy and risk of Lamin A toxicity. J Transl Med 2023; 21:690. [PMID: 37840136 PMCID: PMC10577912 DOI: 10.1186/s12967-023-04542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfβ/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfβ signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.
Collapse
Affiliation(s)
- Chia Yee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Pui Shi Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Hansen Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Sung Wei Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Chang Jie Mick Lee
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Jiong-Wei Wang
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Centre for NanoMedicine, Nanomedicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Shu Ye
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Hendrikje Werner
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
| | - Ying Jie Loh
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
| | - Yin Loon Lee
- Nuevocor Pte Ltd, 1 Biopolis Drive, Amnios, #05-01, Singapore, 138622, Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore, 138665, Singapore
| | - Matthew Ackers-Johnson
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Roger S Y Foo
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore
| | - Jianming Jiang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Centre for Translational Medicine, Cardiovascular Research Institute (CVRI), National University Health System, 14 Medical Drive, Singapore, 117599, Singapore.
- Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, Singapore, 117599, Singapore.
| |
Collapse
|
36
|
Chang L, Huang R, Chen J, Li G, Shi G, Xu B, Wang L. An alpha-helix variant p.Arg156Pro in LMNA as a cause of hereditary dilated cardiomyopathy: genetics and bioinfomatics exploration. BMC Med Genomics 2023; 16:229. [PMID: 37784143 PMCID: PMC10544607 DOI: 10.1186/s12920-023-01661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
LMNA gene encodes lamin A/C protein which participates in the construction of nuclear lamina, the mutations of LMNA result in a wide variety of diseases known as laminopathies. LMNA-related dilated cardiomyopathy(LMNA-DCM) is one of the more common laminopathy which characterized by progressive heart failure and arrhythmia. However, the mutation features of LMNA-DCM are yet to be elucidated. Herein we described a dilated cardiomyopathy family carrying novel variant c.467G > C(p.Arg156Pro) of LMNA as heterozygous pathogenic variant identified by whole-exome sequencing. With the help of Alphafold2, we predicted mutant protein structure and found an interrupted α-helix region in lamin A/C. In the analysis of 49 confirmed pathogenic missense of laminopathies, Chi-square test showed the DCM phenotype was related to the α-helix region mutation (p < 0.017). After screening the differentially expressed genes (DEGs) in both mice models and human patients in Gene Expression Omnibus database, we found the variation of α-helix-coding region in LMNA caused abnormal transcriptomic features in cell migration, collagen-containing extracellular matrix, and PI3K-Akt signaling pathway. Subsequently we constructed (TF)-mRNA-microRNA (miRNA) regulatory network and identified 7 key genes (FMOD, CYP1B1, CA3, F2RL1, HAPLIN1, SNAP91, and KANSL1) as potential biomarkers or therapeutic targets in LMNA-DCM patients.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215000, China
| | - Rong Huang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jianzhou Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guannan Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guangfei Shi
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Lian Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
37
|
Heymans S, Lakdawala NK, Tschöpe C, Klingel K. Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches. Lancet 2023; 402:998-1011. [PMID: 37716772 DOI: 10.1016/s0140-6736(23)01241-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 09/18/2023]
Abstract
Dilated cardiomyopathy is conventionally defined as the presence of left ventricular or biventricular dilatation or systolic dysfunction in the absence of abnormal loading conditions (eg, primary valve disease) or significant coronary artery disease sufficient to cause ventricular remodelling. This definition has been recognised as overly restrictive, as left ventricular hypokinesis without dilation could be the initial presentation of dilated cardiomyopathy. The causes of dilated cardiomyopathy comprise genetic (primary dilated cardiomyopathy) or acquired factors (secondary dilated cardiomyopathy). Acquired factors include infections, toxins, cancer treatment, endocrinopathies, pregnancy, tachyarrhythmias, and immune-mediated diseases. 5-15% of patients with acquired dilated cardiomyopathy harbour a likely pathogenic or pathogenic gene variant (ie, gene mutation). Therefore, the diagnostic tests and therapeutic approach should always consider both genetic and acquired factors. This Seminar will focus on the current multidimensional diagnostic and therapeutic approach and discuss the underlying pathophysiology that could drive future treatments aiming to repair or replace the existing gene mutation, or target the specific inflammatory, metabolic, or pro-fibrotic drivers of genetic or acquired dilated cardiomyopathy.
Collapse
Affiliation(s)
- Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht & Maastricht University Medical Centre, Maastricht, Netherlands; Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Tschöpe
- Department of Cardiology, Angiology, and Intensive Medicine (CVK), German Heart Center of the Charité (DHZC), Charité Universitätsmedizin, Berlin, Germany; Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
38
|
Del Monte-Monge A, Ruiz-Polo de Lara Í, Gonzalo P, Espinós-Estévez C, González-Amor M, de la Fuente-Pérez M, Andrés-Manzano MJ, Fanjul V, Gimeno JR, Barriales-Villa R, Dorado B, Andrés V. Lamin A/C Ablation Restricted to Vascular Smooth Muscle Cells, Cardiomyocytes, and Cardiac Fibroblasts Causes Cardiac and Vascular Dysfunction. Int J Mol Sci 2023; 24:11172. [PMID: 37446344 DOI: 10.3390/ijms241311172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Íñigo Ruiz-Polo de Lara
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Carla Espinós-Estévez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María González-Amor
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel de la Fuente-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Juan R Gimeno
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiac Department, Hospital Clínico Universitario Virgen Arrixaca, 30120 Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Unidad de Cardiopatías Familiares, Complexo Hospitalario Universitario A Coruña (INIBIC-CHUAC), 15006 A Coruña, Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
39
|
Ning S, Han M, Qiu R, Hong X, Xia Z, Liu L, Liu C. Novel pathogenic variant in LMNA gene identified in a six-generation family causing atrial cardiomyopathy and associated right atrial conduction arrhythmias. Front Cardiovasc Med 2023; 10:1109008. [PMID: 37465451 PMCID: PMC10350631 DOI: 10.3389/fcvm.2023.1109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Objective To characterize the cardiac phenotype associated with the novel pathogenic variant (c.1526del) of LMNA gene, which we identified in a large, six-generation family. Methods and Results A family tree was constructed. The clinical data of living and deceased family members were collected. DNA samples from 7 family members were analyzed for LMNA mutations using whole-exome high-throughput sequencing technology. The clinical presentation of pathogenic variant carriers was evaluated. In this six-generation family (n = 67), one member experienced sudden death at the age of 40-years-old. Three pathogenic variant carriers were identified to possess a novel heterozygous deletion mutation in LMNA gene (HGVS: NM_170707.4, c.1526del) located at exon 9 of LMNA chr1:156137145, which creates a premature translational stop signal (p.Pro509Leufs*39) in the LMNA gene and results in an mutant lamin A protein product. The main symptoms of the pathogenic variant carriers were palpitation, fatigue, and syncope, which typically occurred around 20-years-old. AV-conduction block and non-sustained ventricular tachycardia were the first signs of disease and would rapidly progress to atrial standstill around 30-years-old. Significant right atrial enlargement and bicuspid aortic valve malformation was also commonly seen in patients who carried this pathogenic variant. Conclusion The pathogenic variant of c.1526del p.P509Lfs*39 was a frameshift deletion located at exon 9 of LMNA chr1:156137145 and causes severe right atrial enlargement, sick sinus syndrome, atrial standstill, ventricular tachycardia, and bicuspid aortic valve malformation. Our findings expand the phenotypic spectrum of novel LMNA gene mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Liu
- Correspondence: Li Liu Chengwei Liu
| | | |
Collapse
|
40
|
Zhang Y, Zhang Y, Ren M, Xue M, Hu C, Hou Y, Li Z, Qu H, Moreira P. Atrial standstill associated with lamin A/C mutation: A case report. SAGE Open Med Case Rep 2023; 11:2050313X231179810. [PMID: 37425136 PMCID: PMC10328153 DOI: 10.1177/2050313x231179810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/17/2023] [Indexed: 07/11/2023] Open
Abstract
The case report shares evidence for a better understanding of atrial standstill. This being a rare arrhythmogenic condition. This is a 46-year-old woman presented with multiple sites of arterial embolism, including lower extremity arteries, coronary artery, and cerebral artery. Unexpectedly, multiple arterial embolization in the patient was due to atrial standstill by transthoracic echocardiography and cardiac electrophysiological study. An additional family investigation revealed that the patient's brother and sister also suffered from this disease. In search of further understanding the case, we carried out the genetic testing of the family and a frame shift double-G insertion mutation at c.1567 in the LMNA gene was found in all the three individuals. The patient recovered well after anticoagulation therapy and left bundle branch area pacing. This report remarks on the importance of multiple sites of arterial embolism which should be wary of family atrial standstill.
Collapse
Affiliation(s)
- Yujiao Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Manyi Ren
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Minghua Xue
- Department of Ultrasound Diagnosis and Treatment, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunying Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhiyuan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Haiyan Qu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Paulo Moreira
- Atlantica Instituto Universitario, Gestao em Saude, Oeiras, Portugal
- International Healthcare Management Research and Development Center (IHM-RDC), The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
41
|
Tsabedze N, Ramsay M, Krause A, Wells Q, Mpanya D, Manga P. The genetic basis for adult-onset idiopathic dilated cardiomyopathy in people of African descent. Heart Fail Rev 2023; 28:879-892. [PMID: 36917398 PMCID: PMC10011790 DOI: 10.1007/s10741-023-10302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Cardiomyopathies are a heterogeneous group of cardiac muscle disorders that result in dilated, hypertrophic, or restrictive pathophysiological entities. Dilated cardiomyopathy (DCM) is the most common form in sub-Saharan Africa (SSA). However, population-specific research studies reporting the actual burden of DCM in this region are still lacking. Also, little is known about the genetic basis of DCM in this population, and genetic testing is still not readily accessible. This review describes the common pathogenic genes implicated in DCM globally and discusses the evidence-based management of patients with DCM. We also present a summary of studies describing genes implicated or associated with DCM in patients residing in SSA.
Collapse
Affiliation(s)
- Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Services and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2001 South Africa
| | - Quinn Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232 TN USA
| | - Dineo Mpanya
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| |
Collapse
|
42
|
Walker SG, Langland CJ, Viles J, Hecker LA, Wallrath LL. Drosophila Models Reveal Properties of Mutant Lamins That Give Rise to Distinct Diseases. Cells 2023; 12:cells12081142. [PMID: 37190051 DOI: 10.3390/cells12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the LMNA gene cause a collection of diseases known as laminopathies, including muscular dystrophies, lipodystrophies, and early-onset aging syndromes. The LMNA gene encodes A-type lamins, lamins A/C, intermediate filaments that form a meshwork underlying the inner nuclear membrane. Lamins have a conserved domain structure consisting of a head, coiled-coil rod, and C-terminal tail domain possessing an Ig-like fold. This study identified differences between two mutant lamins that cause distinct clinical diseases. One of the LMNA mutations encodes lamin A/C p.R527P and the other codes lamin A/C p.R482W, which are typically associated with muscular dystrophy and lipodystrophy, respectively. To determine how these mutations differentially affect muscle, we generated the equivalent mutations in the Drosophila Lamin C (LamC) gene, an orthologue of human LMNA. The muscle-specific expression of the R527P equivalent showed cytoplasmic aggregation of LamC, a reduced larval muscle size, decreased larval motility, and cardiac defects resulting in a reduced adult lifespan. By contrast, the muscle-specific expression of the R482W equivalent caused an abnormal nuclear shape without a change in larval muscle size, larval motility, and adult lifespan compared to controls. Collectively, these studies identified fundamental differences in the properties of mutant lamins that cause clinically distinct phenotypes, providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Sydney G Walker
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher J Langland
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jill Viles
- Independent Researcher, Gowrie, IA 50543, USA
| | - Laura A Hecker
- Department of Biology, Clarke University, Dubuque, IA 52001, USA
| | - Lori L Wallrath
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
44
|
Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol 2023; 324:H259-H278. [PMID: 36563014 PMCID: PMC9886352 DOI: 10.1152/ajpheart.00618.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.
Collapse
Affiliation(s)
- Pavan Manoj
- School of Public Health, Texas A&M University, College Station, Texas
| | - Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kim
- Department of BioSciences, Rice University, Houston, Texas
| | - Tingting Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maham Sewani
- Department of BioSciences, Rice University, Houston, Texas
| | - Mihail G Chelu
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
El Hadi H, Freund A, Desch S, Thiele H, Majunke N. Hypertrophic, Dilated, and Arrhythmogenic Cardiomyopathy: Where Are We? Biomedicines 2023; 11:biomedicines11020524. [PMID: 36831060 PMCID: PMC9953324 DOI: 10.3390/biomedicines11020524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of structural, mechanical, and electrical heart muscle disorders which often correlate with life-threatening arrhythmias and progressive heart failure accounting for significant cardiovascular morbidity and mortality. Currently, cardiomyopathies still represent a leading reason for heart transplantation worldwide. The last years have brought remarkable advances in the field of cardiomyopathies especially in terms of understanding the molecular basis as well as the diagnostic evaluation and management. Although most cardiomyopathy treatments had long focused on symptom management, much of the current research efforts aim to identify and act on the disease-driving mechanisms. Regarding risk assessment and primary prevention of sudden cardiac death, additional data are still pending in order to pave the way for a more refined and early patient selection for defibrillator implantation. This review summarizes the current knowledge of hypertrophic, dilated and arrhythmogenic cardiomyopathy with a particular emphasis on their pathophysiology, clinical features, and diagnostic approach. Furthermore, the relevant ongoing studies investigating novel management approaches and main gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Hamza El Hadi
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| | | | | | | | - Nicolas Majunke
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| |
Collapse
|
46
|
Guevara-Ramírez P, Cadena-Ullauri S, Ibarra-Castillo R, Laso-Bayas JL, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Doménech N, Ibarra-Rodríguez AA, Zambrano AK. Genomic analysis of a novel pathogenic variant in the gene LMNA associated with cardiac laminopathies found in Ecuadorian siblings: A case report. Front Cardiovasc Med 2023; 10:1141083. [PMID: 37025686 PMCID: PMC10070725 DOI: 10.3389/fcvm.2023.1141083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Cardiac laminopathies are caused by mutations in the LMNA gene and include a wide range of clinical manifestations involving electrical and mechanical changes in cardiomyocytes. In Ecuador, cardiovascular diseases were the primary cause of death in 2019, accounting for 26.5% of total deaths. Cardiac laminopathy-associated mutations involve genes coding for structural proteins with functions related to heart development and physiology. Family description Two Ecuadorian siblings, self-identified as mestizos, were diagnosed with cardiac laminopathies and suffered embolic strokes. Moreover, by performing Next-Generation Sequencing, a pathogenic variant (NM_170707.3:c.1526del) was found in the gene LMNA. Discussion and conclusion Currently, genetic tests are an essential step for disease genetic counseling, including cardiovascular disease diagnosis. Identification of a genetic cause that may explain the risk of cardiac laminopathies in a family can help the post-test counseling and recommendations from the cardiologist. In the present report, a pathogenic variant ((NM_170707.3:c.1526del) has been identified in two Ecuadorian siblings with cardiac laminopathies. The LMNA gene codes for A-type laminar proteins that are associated with gene transcription regulation. Mutations in the LMNA gene cause laminopathies, disorders with diverse phenotypic manifestations. Moreover, understanding the molecular biology of the disease-causing mutations is essential in deciding the correct type of treatment.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rita Ibarra-Castillo
- Department of Hemodynamics, Clinical Cardiac Electrophysiologist, Quito-Ecuador, Ecuador
| | - José Luis Laso-Bayas
- Department of Hemodynamics, Clinical Cardiac Electrophysiologist, Quito-Ecuador, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nieves Doménech
- Instituto de Investigación Biomédica de A Coruña (INIBIC)-CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidad da Coruña (UDC), La Coruña-Spain, Spain
| | | | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Correspondence: Ana Karina Zambrano
| |
Collapse
|
47
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
48
|
Santini GT, Shah PP, Karnay A, Jain R. Aberrant chromatin organization at the nexus of laminopathy disease pathways. Nucleus 2022; 13:300-312. [PMID: 36503349 PMCID: PMC9746625 DOI: 10.1080/19491034.2022.2153564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ashley Karnay
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
49
|
Zhang H, Ren L, Wu JC. New Insights Into the Therapy for Lamin-Associated Dilated Cardiomyopathy. JACC Basic Transl Sci 2022; 7:1246-1248. [PMID: 36644287 PMCID: PMC9831934 DOI: 10.1016/j.jacbts.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
50
|
Zhong ZX, Harris J, Wilber E, Gorman S, Savage DB, O'Rahilly S, Stears A, Williams RM. Describing the natural history of clinical, biochemical and radiological outcomes of children with familial partial lipodystrophy type 2 (FPLD2) from the United Kingdom: A retrospective case series. Clin Endocrinol (Oxf) 2022; 97:755-762. [PMID: 35920656 PMCID: PMC9804585 DOI: 10.1111/cen.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
CONTEXT Familial partial lipodystrophy type 2 (FPLD2) results from autosomal dominant mutations in the LMNA gene, causing lack of subcutaneous fat deposition and excess ectopic fat accumulation, leading to metabolic complications and reduced life expectancy. The rarity of the condition means that the natural history of FPLD2 throughout childhood is not well understood. We report outcomes in a cohort of 12 (5M) children with a genetic diagnosis of FPLD2, under the care of the UK National Severe Insulin Resistance Service (NSIRS) which offers multidisciplinary input including dietetic, in addition to screening for comorbidities. OBJECTIVE To describe the natural history of clinical, biochemical and radiological outcomes of children with FPLD2. DESIGN A retrospective case note review of children with a genetic diagnosis of FPLD2 who had been seen in the paediatric NSIRS was performed. PATIENTS Twelve (5M) individuals diagnosed with FPLD2 via genetic testing before age 18 and who attended the NSIRS clinic were included. MEASUREMENTS Relationships between metabolic variables (HbA1c, triglycerides, fasting insulin, fasting glucose and alanine transaminase [ALT]) across time, from first visit to most recent, were explored using a multivariate model, adjusted for age and gender. The age of development of comorbidities was recorded. RESULTS Three patients (all female) developed diabetes between 12 and 19 years and were treated with Metformin. One female has hypertrophic cardiomyopathy and four (1M) patients developed mild hepatic steatosis at a median [range] age of 14(12-15) years. Three (1M) patients reported mental health problems related to lipodystrophy. There was no relationship between biochemical results and age. Patients with diabetes had higher concentrations of ALT than patients who did not have diabetes, adjusted for age, gender and body mass index standard deviation scores. CONCLUSIONS Despite dietetic input, some patients, more commonly females, developed comorbidities after the age of 10. The absence of relationships between biochemical results and age likely reflects a small cohort size. We propose that, while clinical review and dietetic support are beneficial for children with FPLD2, formal screening for comorbidities before age 10 may not be of benefit. Clinical input from an multidisciplinary team including dietician, psychologist and clinician should be offered after diagnosis.
Collapse
Affiliation(s)
| | | | - Ellen Wilber
- Cambridge University Hospitals NHS TrustCambridgeUK
| | | | - David B. Savage
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
| | | | - Anna Stears
- Cambridge University Hospitals NHS TrustCambridgeUK
| | | |
Collapse
|