1
|
Wadan AHS, Shaaban AH, El-Sadek MZ, Mostafa SA, Moshref AS, El-Hussein A, Ellakwa DES, Mehanny SS. Mitochondrial-based therapies for neurodegenerative diseases: a review of the current literature. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04014-0. [PMID: 40163151 DOI: 10.1007/s00210-025-04014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Neurodegenerative disorders present significant challenges to modern medicine because of their complex etiology, pathogenesis, and progressive nature, which complicate practical treatment approaches. Mitochondrial dysfunction is an important contributor to the pathophysiology of various neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). This review paper examines the current literature highlighting the multifaceted functions of mitochondria, including energy production, calcium signaling, apoptosis regulation, mitochondrial biogenesis, mitochondrial dynamics, axonal transport, endoplasmic reticulum-mitochondrial interactions, mitophagy, mitochondrial proteostasis, and their crucial involvement in neuronal health. The literature emphasizes the increasing recognition of mitochondrial dysfunction as a critical factor in the progression of neurodegenerative disorders, marking a shift from traditional symptom management to innovative mitochondrial-based therapies. By discussing mitochondrial mechanisms, including mitochondrial quality control (MQC) processes and the impact of oxidative stress, this review highlights the need for novel therapeutic strategies to restore mitochondrial function, protect neuronal connections and integrity, and slow disease progression. This comprehensive review aims to provide insights into potential interventions that could transform the treatment landscape for neurodegenerative diseases, addressing symptoms and underlying pathophysiological changes.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt.
| | - Ahmed H Shaaban
- Department of Biology, Faculty of Science, Galala University, Galala Plateau, Attaka,, Suez Governorate, 15888, Egypt
| | - Mohamed Z El-Sadek
- Department of Biology, Faculty of Science, Galala University, Galala Plateau, Attaka,, Suez Governorate, 15888, Egypt
| | | | - Ahmed Sherief Moshref
- Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
| | - Ahmed El-Hussein
- Department of Biology, Faculty of Science, Galala University, Galala Plateau, Attaka,, Suez Governorate, 15888, Egypt
- Department of Laser Applications in Meteorology, Photochemistry, and Biotechnology, The National Institute of Laser Enhanced Science, Cairo University, Cairo, 11316, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Duan J, Zhou X, Zhu H, Zhou M, Liu M, Zhou Y, Li W, Xu B, Zhang A. Decreased expression of LEF1 caused defective decidualization by inhibiting IL-11 expression in patients with adenomyosis. Mol Med 2025; 31:10. [PMID: 39794729 PMCID: PMC11720350 DOI: 10.1186/s10020-024-01054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Reduced lymphoid enhancer-binding factor 1 (LEF1) expression in patients with adenomyosis during the mid-secretory phase leads to impaired endometrial receptivity, affecting embryo implantation. This study investigated the molecular mechanisms underlying reduced endometrial receptivity in 25 adenomyosis patients and 25 controls. Functional experiments were conducted using human endometrial stromal cells (HESCs) and TERT-immortalized HESCs(T-HESCs), with final validation performed using a mouse model. Western blot and quantitative real-time polymerase chain reaction (RT-qPCR) analyses revealed that patients with adenomyosis showed a marked decrease in LEF1 expression in the stromal cells of the endometrium during the mid-secretory phase. In vitro experiments demonstrated that LEF1 knockdown in stromal cells led to impaired decidualization. Transcriptome sequencing, dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) experiments showed that LEF1 could bind to the promoter region of interleukin (IL)-11 and promote its transcription, and IL-11 expression was also found to be downregulated in adenomyosis patients. Overexpression of IL-11 rescued the impaired decidualization caused by decreased LEF1 expression. In the in vitro co-culture model, LEF1/IL-11 knockdown led to a reduction in embryo implantation area, which was partially restored upon IL-11 overexpression. In the adenomyosis mouse model, we observed a decrease in LEF1 expression and a reduction in implantation sites compared to control mice, accompanied by impaired decidualization and receptivity. Notably, supplementation with IL-11 restored the number of implantation sites. The decrease in fertility due to reduced endometrial receptivity in adenomyosis patients is a significant clinical issue in assisted reproductive technology. This research provides insights into one potential molecular mechanism underlying this decreased receptivity, with a specific focus on the reduced expression of LEF1 in the endometrial stromal cells during the mid-secretory phase in adenomyosis patients. Our findings offer new perspectives for clinical strategies to improve endometrial receptivity in patients with adenomyosis, potentially enhancing their chances of successful pregnancy.
Collapse
Affiliation(s)
- Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanfei Zhu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
3
|
Liu X, Wang C, Zhang X, Zhang R. LEF1 is associated with immunosuppressive microenvironment of patients with lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e39892. [PMID: 39465830 PMCID: PMC11479531 DOI: 10.1097/md.0000000000039892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
Wnt/β-Catenin pathway plays an important role in the occurrence and progression of malignant tumors, especially PD-L1-mediated tumor immune evasion. However, the role of TCF/LEF, an important member of the Wnt/β-catenin pathway, in the tumor immunosuppressive microenvironment of lung adenocarcinoma (LUAD) remains unknown. LUAD tissue-coding RNA expression data from The Cancer Genome Atlas and TIMER databases were used to analyze the expression of TCF/LEF transcription factors and their correlation with various immune cell infiltration. Immunohistochemistry and immunofluorescence were used to detect tissue protein staining in 105 patients with LUAD. LEF1, TCF7, TCF7L1 and TCF7L2 were all aberrantly expressed in the tumor tissues of LUAD patients with the data from The Cancer Genome Atlas (TCGA) database, tumor immune estimation resource (TIMER) database and results of immunohistochemistry, but only LEF1 expression was associated with 5-year overall survival in LUAD patients. LEF1 protein expression was associated with advanced tumor node metastasis (TNM) stage, lymphatic metastasis and local invasion in 105 cases LUAD patients. At the same time, LEF1 mRNA expression was also associated with immunosuppressive microenvironment in LUAD patients with the data from TCGA database and TIMER database. Results of immunohistochemistry and immunofluorescence in tumor tissues of 105 cases LUAD patients showed that there was a positively correlation between LEF1 protein expression and the infiltration of M2 macrophages and Treg cells. LEF1 was highly expressed in tumor tissues of LUAD patients, and highly expressed LEF1 was associated with the immunosuppressive microenvironment of LUAD patients.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Chunlou Wang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoling Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rongju Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
4
|
Su D, Swearson S, Krongbaramee T, Sun H, Hong L, Amendt BA. Exploring microRNAs in craniofacial regenerative medicine. Biochem Soc Trans 2023; 51:841-854. [PMID: 37073783 PMCID: PMC11244734 DOI: 10.1042/bst20221448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
microRNAs (miRs) have been reported over the decades as important regulators in bone development and bone regeneration. They play important roles in maintaining the stem cell signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors to the defect site is a potential treatment towards craniofacial bone defects. However, there are challenges in translation of basic research to clinics, including the efficiency, specificity, and efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy of using these technologies to express or inhibit miRs in treating and repairing oral tissues. Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different results and depending on their composition will elicit specific effects. We will highlight the specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
| | - Samuel Swearson
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
- Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Liu Hong
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
5
|
Wright JT, Abbott BM, Salois MN, Gugger JA, Parraga SP, Swanson AK, Fete M, Koster MI. Rare diseases of ectoderm: Translating discovery to therapy. Am J Med Genet A 2023; 191:902-909. [PMID: 36534506 DOI: 10.1002/ajmg.a.63090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Heritable conditions known as ectodermal dysplasias are rare and can be associated with marked morbidity, mortality, and a reduced quality of life. The diagnosis and care of individuals affected by one of the many ectodermal dysplasias presents myriad challenges due to their rarity and the diverse phenotypes. These conditions are caused by abnormalities in multiple genes and signaling pathways that are essential for the development and function of ectodermal derivatives. During a 2021 international conference focused on translating discovery to therapy, researchers and clinicians gathered with the goal of advancing the diagnosis and treatment of conditions affecting ectodermal tissues with an emphasis on skin, hair, tooth, and eye phenotypes. Conference participants presented a variety of promising treatment strategies including gene or protein replacement, gene editing, cell therapy, and the identification of druggable targets. Further, barriers that negatively influence the current development of novel therapeutics were identified. These barriers include a lack of accurate prevalence data for rare conditions, absence of an inclusive patient registry with deep phenotyping data, and insufficient animal models and cell lines. Overcoming these barriers will need to be prioritized in order to facilitate the development of novel treatments for genetic disorders of the ectoderm.
Collapse
Affiliation(s)
- John Timothy Wright
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Becky M Abbott
- National Foundation for Ectodermal Dysplasias, Fairview Heights, Illinois, USA
| | - Maddison N Salois
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jessica A Gugger
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Shirley P Parraga
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Amanda K Swanson
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mary Fete
- National Foundation for Ectodermal Dysplasias, Fairview Heights, Illinois, USA
| | - Maranke I Koster
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
6
|
CARNEIRO VF, MACHADO RA, BARBOSA MC, DIAS VO, MARTELLI DRB, MARTELLI-JÚNIOR H. Dental anomalies in syndromes displaying hypertrichosis in the clinical spectrum. Braz Oral Res 2023; 37:e030. [PMID: 37018811 DOI: 10.1590/1807-3107bor-2023.vol37.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/19/2022] [Indexed: 04/05/2023] Open
Abstract
Hypertrichosis and dental anomalies may occur alone or in combination in the spectrum of many syndromes. To identify genetic entities characterized by hypertrichosis and dental anomalies, a search was performed in the Mendelian Inheritance in Man database with the terms "hypertrichosis" or "hirsutism" and "tooth" or "dental abnormalities." Nondependent androgen metabolism disturbances were classified as hypertrichosis. Genetic entities with hypertrichosis and dental anomalies were included in the study. Additional searches were performed in the PubMed and Orphanet databases, when necessary, in order to include data from scientific articles. An integrative analysis of the genes associated with the identified syndromes was conducted using STRING to characterize biological processes, pathways, and interactive networks. The p-values were subjected to the false discovery rate for the correction of multiple tests. Thirty-nine syndromes were identified, and dental agenesis was the most frequent dental anomaly present in 41.02% (n = 16) of the syndromes. Causative genes were identified in 33 out of 39 genetic syndromes. Among them, 39 genes were identified, and 38 were analyzed by STRING, which showed 148 biological processes and three pathways that were statistically significant. The most significant biological processes were the disassembly of the nucleosome (GO:0006337, p = 1.09e-06), chromosomal organization (GO:0051276, p = 1.09e-06) and remodeling of the chromatin (GO: 0006338, p = 7.86e-06), and the pathways were hepatocellular carcinoma (hsa05225, p = 5.77e-05), thermogenesis (hsa04714, p = 0.00019), and cell cycle (hsa04110, p = 0.0433). Our results showed that the identification of hypertrichosis and dental anomalies may raise the suspicion of one of the thirty-nine syndromes with both phenotypes.
Collapse
|
7
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
8
|
Eliason S, Su D, Pinho F, Sun Z, Zhang Z, Li X, Sweat M, Venugopalan SR, He B, Bustin M, Amendt BA. HMGN2 represses gene transcription via interaction with transcription factors Lef-1 and Pitx2 during amelogenesis. J Biol Chem 2022; 298:102295. [PMID: 35872015 PMCID: PMC9418915 DOI: 10.1016/j.jbc.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2–transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA
| | - Dan Su
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA
| | | | - Zhao Sun
- Washington University St. Louis, St. Louis, MO
| | | | - Xiao Li
- Texas Heart Institute, Houston, TX
| | | | | | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA; Department of Orthodontics, The University of Iowa, Iowa City, IA.
| |
Collapse
|
9
|
Sweat Y, Ries RJ, Sweat M, Su D, Shao F, Eliason S, Amendt BA. miR-17 acts as a tumor suppressor by negatively regulating the miR-17-92 cluster. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1148-1158. [PMID: 34853714 PMCID: PMC8601969 DOI: 10.1016/j.omtn.2021.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive, highly metastatic cancer that expresses high levels of the microRNA (miR)-17-92 cluster. We employ an miR inhibitor system to study the function of the different miRs within the miR-17-92 cluster based on seed sequence homology in the ATC SW579 cell line. While three of the four miR-17-92 families were oncogenic, we uncovered a novel role for miR-17 as a tumor suppressor in vitro and in vivo. Surprisingly, miR-17 inhibition increased expression of the miR-17-92 cluster and significantly increased the levels of the miR-18a and miR-19a mature miRs. miR-17 inhibition increased expression of the cell cycle activator CCND2, associated with increased cell proliferation and tumor growth in transplanted SW579 cells in xenograft mice. miR-17 regulates MYCN and c-MYC expression in SW579 cells, and the inhibition of miR-17 increased MYCN and c-MYC expression, which increased pri-miR-17-92 transcripts. Thus, inhibition of miR-17 activated the expression of the oncogenic miRs, miR-18a and miR-19a. While many cancers express high levels of miR-17, linking it with tumorigenesis, we demonstrate that miR-17 inhibition does not inhibit thyroid tumor growth in SW579 and MDA-T32 ATC cells but increases expression of the other miR-17-92 family members and genes to induce cancer progression.
Collapse
Affiliation(s)
- Yan Sweat
- Harvard University, Boston, MA 02115, USA
| | - Ryan J. Ries
- Weill-Cornell Medical College, Cornell University, New York, NY 10075, USA
| | | | - Dan Su
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Fan Shao
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Steven Eliason
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brad A. Amendt
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA 52242, USA
- Corresponding author: Brad A. Amendt, PhD, Carver College of Medicine, Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Shi J, Wang J, Cheng H, Liu S, Hao X, Lan L, Wu G, Liu M, Zhao Y. FOXP4 promotes laryngeal squamous cell carcinoma progression through directly targeting LEF‑1. Mol Med Rep 2021; 24:831. [PMID: 34590150 PMCID: PMC8503739 DOI: 10.3892/mmr.2021.12471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that have been shown to be involved in cell cycle progression, proliferation and metastasis. FOXP4, a member of the FOX family, has been implicated in diverse biological processes in tumor initiation and progression. However, the molecular mechanisms of FOXP4 in laryngeal squamous cell carcinoma (LSCC) remain unknown. In the present study, differentially expressed transcripts in transforming growth factor‑β‑treated TU177 cells were screened using microarrays and it was found that FOXP4 was significantly upregulated. The high expression of FOXP4 was detected in LSCC tissues and cells, and predicted poor prognosis. The role of FOXP4 in laryngeal cancer cell proliferation, migration and invasion was determined by gain‑ and loss‑of‑function assays. Besides, FOXP4 was demonstrated to participate in the epithelial‑mesenchymal transition process at the mRNA and protein levels. Mechanically, FOXP4 directly bound to the promoter of lymphoid enhancer‑binding factor 1 and activated Wnt signaling pathway, which was confirmed via chromatin immunoprecipitation and luciferase reporter assays. Consequently, these findings provided novel mechanisms of FOXP4 in LSCC progression, which may be considered as potential therapeutic and prognostic targets for LSCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingtian Wang
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongkun Cheng
- Department of Otorhinolaryngology, The Third Hospital of Handan, Handan, Hebei 056001, P.R. China
| | - Shenghui Liu
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaowei Hao
- Department of Otorhinolaryngology, The People's Hospital of Cixian, Handan, Hebei 056500, P.R. China
| | - Lili Lan
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Gancun Wu
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Meng Liu
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Zhao
- Department of Otolaryngology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
11
|
Hong L, Sun H, Amendt BA. MicroRNA function in craniofacial bone formation, regeneration and repair. Bone 2021; 144:115789. [PMID: 33309989 PMCID: PMC7869528 DOI: 10.1016/j.bone.2020.115789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Bone formation in the craniofacial complex is regulated by cranial neural crest (CNC) and mesoderm-derived cells. Different elements of the developing skull, face, mandible, maxilla (jaws) and nasal bones are regulated by an array of transcription factors, signaling molecules and microRNAs (miRs). miRs are molecular modulators of these factors and act to restrict their expression in a temporal-spatial mechanism. miRs control the different genetic pathways that form the craniofacial complex. By understanding how miRs function in vivo during development they can be adapted to regenerate and repair craniofacial genetic anomalies as well as bone diseases and defects due to traumatic injuries. This review will highlight some of the new miR technologies and functions that form new bone or inhibit bone regeneration.
Collapse
Affiliation(s)
- Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA; The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA, USA; Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|