1
|
Yun HM, Hyun S. Role of gut commensal bacteria in juvenile developmental growth of the host: insights from Drosophila studies. Anim Cells Syst (Seoul) 2023; 27:329-339. [PMID: 38023592 PMCID: PMC10653766 DOI: 10.1080/19768354.2023.2282726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
The gut microbiome plays a crucial role in maintaining health in a variety of organisms, from insects to humans. Further, beneficial symbiotic microbes are believed to contribute to improving the quality of life of the host. Drosophila is an optimal model for studying host-commensal microbe interactions because it allows for convenient manipulation of intestinal microbial composition. Fly microbiota has a simple taxonomic composition and can be cultivated and genetically tracked. This permits functional studies and analyses of the molecular mechanisms underlying their effects on host physiological processes. In this context, we briefly introduce the principle of juvenile developmental growth in Drosophila. Then, we discuss the current understanding of the molecular mechanisms underlying the effects of gut commensal bacteria, such as Lactiplantibacillus plantarum and Acetobacter pomorum, in the fly gut microbiome on Drosophila juvenile growth, including specific actions of gut hormones and metabolites in conserved cellular signaling systems, such as the insulin/insulin-like (IIS) and the target of rapamycin (TOR) pathways. Given the similarities in tissue function/structure, as well as the high conservation of physiological systems between Drosophila and mammals, findings from the Drosophila model system will have significant implications for understanding the mechanisms underlying the interaction between the host and the gut microbiome in metazoans.
Collapse
Affiliation(s)
- Hyun Myoung Yun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
2
|
Lee J, Song X, Hyun B, Jeon CO, Hyun S. Drosophila Gut Immune Pathway Suppresses Host Development-Promoting Effects of Acetic Acid Bacteria. Mol Cells 2023; 46:637-653. [PMID: 37853687 PMCID: PMC10590707 DOI: 10.14348/molcells.2023.0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/20/2023] Open
Abstract
The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.
Collapse
Affiliation(s)
- Jaegeun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Xinge Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Bom Hyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
3
|
Hatle JD, Maslikova V, Short CA, Bracey D, Darmanjian M, Morningstar S, Reams B, Mashanov VS, Jahan-Mihan A, Hahn DA. Protein storage and reproduction increase in grasshoppers on a diet matched to the amino acids of egg yolk protein. J Exp Biol 2022; 225:jeb244450. [PMID: 35916173 PMCID: PMC9482367 DOI: 10.1242/jeb.244450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
The diets of animals are essential to support development, and protein is key. Accumulation of stored nutrients can support developmental events such as molting and initiation of reproduction. Agricultural studies have addressed how dietary protein quality affects growth, but few studies have addressed the effects of dietary protein quality on developmental transitions. Studies on how dietary quality may affect protein storage and development are possible in arthropods, which store proteins in the hemolymph. We hypothesized that diets with a composition of amino acids that matches the precursor of egg yolk protein (vitellogenin, Vg) will be high quality and support both egg production and accumulation of storage proteins. Grasshoppers were fed one of two isonitrogenous solutions of amino acids daily: Vg-balanced (matched to Vg) or Unbalanced (same total moles of amino acids, but not matched to egg yolk). We measured reproduction and storage protein levels in serial hemolymph samples from individuals. The Vg-balanced group had greater reproduction and greater cumulative levels of storage proteins than did the Unbalanced group. This occurred even though amino acids fed to the Vg-balanced group were not a better match to storage protein than were the amino acids fed to the Unbalanced group. Further, oviposition timing was best explained by a combination of diet, age at the maximum level of storage protein hexamerin-270 and accumulation of hexamerin-90. Our study tightens the link between storage proteins and commitment to reproduction, and shows that dietary protein quality is vital for protein storage and reproduction.
Collapse
Affiliation(s)
- John D. Hatle
- Department of Biology, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | | - Clancy A. Short
- Entomology and Nematology Department, University of Florida, Institute of Food and Agricultural Sciences, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | - Donald Bracey
- Entomology and Nematology Department, University of Florida, Institute of Food and Agricultural Sciences, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | | | | | - Brooke Reams
- Department of Biology, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | | | | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, Institute of Food and Agricultural Sciences, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
5
|
Loneliness associates strongly with anxiety and depression during the COVID pandemic, especially in men and younger adults. Sci Rep 2022; 12:9517. [PMID: 35681066 PMCID: PMC9178936 DOI: 10.1038/s41598-022-13049-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Loneliness is associated with major depressive disorder (MDD), and likely also with generalized anxiety disorder (GAD). It is unclear if these associations are moderated by age, sex, or genetic susceptibility for MDD. We included 75,279 individuals from the Lifelines COVID-19 study, a longitudinal study of a Dutch population-based cohort. Participants completed up to sixteen digital questionnaires between March 2020 and January 2021, yielding a total of 616,129 observations. Loneliness was assessed with the Three-Item Loneliness Scale, and MDD and GAD with the Mini-International Neuropsychiatric Interview. We used generalized estimating equations to investigate the association between loneliness and MDD and GAD, and whether this association varied across time, age, sex and MDD polygenic risk. Loneliness was strongly associated with all MDD and GAD outcomes. Individuals with the highest loneliness scores were around 14 times more likely to have MDD, and 11 times more likely to have GAD, compared to individuals who reported the least loneliness. The association between loneliness and MDD symptoms was stronger in men, younger individuals, and increased across time. While MDD polygenic risk predicted MDD and GAD outcomes, we did not find an interaction effect with loneliness. Our study, which is the largest to date, confirms that loneliness is an important risk factor for MDD, GAD, depressive and anxiety symptoms, especially in men and younger individuals. Future studies should investigate the mechanisms of these associations and explore loneliness-based interventions to prevent and treat MDD and GAD.
Collapse
|