1
|
Rao S, Watt KEN, Maili L, Lamb M, Farrow E, Hassan H, Weaver K, Miller B, Dash S, Cox LL, Gallacher L, Kant SG, Gibson M, Pastinen T, Li D, Bhoj EJK, Zhu H, Zhang J, Zhang YB, Tan TY, Trainor PA, Cox TC. Splicing Defects and Cell Death Cause SF3B2-Linked Craniofacial Microsomia. J Dent Res 2025:220345251325818. [PMID: 40275713 DOI: 10.1177/00220345251325818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Craniofacial microsomia (CFM) is a genetically and phenotypically heterogeneous disorder characterized by hypoplasia of facial tissue that is often asymmetric. Affected tissues typically include the ears (external and internal), mandible, and maxilla, but various extracranial anomalies have also been reported. Loss-of-function variants in the SF3B2 gene have recently been reported in 8 cases of CFM, representing one of the more common genetic causes identified to date. To better define the full phenotypic spectrum associated with variants in SF3B2, we report novel loss-of-function variants in SF3B2 in 5 new families with CFM. Furthermore, to determine the mechanism by which SF3B2 loss-of-function perturbs craniofacial development, we established sf3b2-null mutant zebrafish, which exhibited severe deficiencies in craniofacial cartilage and bone progenitors due to elevated apoptosis and reduced proliferation of cranial neural crest cells. In addition, we generated a heterozygous truncating variant of SF3B2 in human induced pluripotent stem cells using CRISPR/Cas9 gene editing. Differentiation of these cells into neural crest cells was accompanied by increased cell death and reduced proliferation. RNA sequencing of sf3b2 mutant zebrafish revealed widespread disruption of mRNA splicing, including mdm2, a key regulator of Tp53-mediated apoptosis. Genetic inhibition of tp53 in sf3b2 mutants demonstrated that tp53 inhibition reduces early cell death but does not improve proliferation or craniofacial cartilage development. Therefore, our functional studies indicate that widespread mRNA splicing disruption, in addition to Tp53-dependent cell death, contributes to the craniofacial features observed in SF3B2-related CFM.
Collapse
Affiliation(s)
- S Rao
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - K E N Watt
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - L Maili
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - M Lamb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - E Farrow
- Children's Mercy Hospital, Kansas City, MO, USA
| | - H Hassan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - K Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - B Miller
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - S Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biological Sciences, University at Albany (SUNY Albany), Albany, NY, USA
| | - L L Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - S G Kant
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Gibson
- Children's Mercy Hospital, Kansas City, MO, USA
| | - T Pastinen
- Children's Mercy Hospital, Kansas City, MO, USA
| | - D Li
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E J K Bhoj
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - H Zhu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - J Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Y-B Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - T Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - T C Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
2
|
Khouri-Farah N, Winchester EW, Schilder BM, Robinson K, Curtis SW, Skene NG, Leslie-Clarkson EJ, Cotney J. Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633396. [PMID: 39868299 PMCID: PMC11761091 DOI: 10.1101/2025.01.18.633396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks). This resource resolves the transcriptional dynamics of seven major cell types and uncovers distinct major cell types, including muscle progenitors and cranial neural crest cells (CNCCs), as well as dozens of subtypes of ectoderm and mesenchyme. Comparative analyses reveal substantial conservation of major cell types, alongside human biased differences in gene expression programs. CNCCs, which play a crucial role in craniofacial morphogenesis, exhibit the lowest marker gene conservation, underscoring their evolutionary plasticity. Spatial transcriptomics further localizes cell populations, providing a detailed view of their developmental roles and anatomical context. We also link these developmental processes to genetic variation, identifying cell type-specific enrichments for common variants associated with facial morphology and rare variants linked to orofacial clefts. Intriguingly, Neanderthal-introgressed sequences are enriched near genes with biased expression in cartilage and specialized ectodermal subtypes, suggesting their contribution to modern human craniofacial features. This atlas offers unprecedented insights into the cellular and genetic mechanisms shaping the human face, highlighting conserved and distinctly human aspects of craniofacial biology. Our findings illuminate the developmental origins of craniofacial disorders, the genetic basis of facial variation, and the evolutionary legacy of ancient hominins. This work provides a foundational resource for exploring craniofacial biology, with implications for developmental genetics, evolutionary biology, and clinical research into congenital anomalies.
Collapse
Affiliation(s)
| | | | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | | | - Justin Cotney
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, Jones KL, Cornell RA, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024; 151:dev202095. [PMID: 38063857 PMCID: PMC10820886 DOI: 10.1242/dev.202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Collapse
Affiliation(s)
- Timothy T. Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D. Kiel
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Colin P. Kenny
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Liu X, Jones WD, Quesnel-Vallières M, Devadiga SA, Lorent K, Valvezan AJ, Myers RL, Li N, Lengner CJ, Barash Y, Pack M, Klein PS. The Tumor Suppressor Adenomatous Polyposis Coli (apc) Is Required for Neural Crest-Dependent Craniofacial Development in Zebrafish. J Dev Biol 2023; 11:29. [PMID: 37489330 PMCID: PMC10366761 DOI: 10.3390/jdb11030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/26/2023] Open
Abstract
Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor Adenomatous Polyposis Coli (apc) disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, apcmcr/mcr larvae express substantially higher levels of complement c3, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in stroma-derived factor 1 (sdf1/cxcl12), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in apc mutant zebrafish, including a splice variant that deletes a conserved domain in semaphorin 3f (sema3f), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for apc in CNC development in the context of some of the seminal findings of Mayor and colleagues.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William D. Jones
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sudhish A. Devadiga
- Faculty of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Lorent
- Department of Medicine (Gastroenterology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander J. Valvezan
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca L. Myers
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J. Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Pack
- Department of Medicine (Gastroenterology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter S. Klein
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Nguyen TT, Mitchell JM, Kiel MD, Jones KL, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545376. [PMID: 37398373 PMCID: PMC10312788 DOI: 10.1101/2023.06.16.545376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulated numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a mutant zebrafish present abnormal alx3 expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating vertebrate midfacial development in part through ALX transcription factor gene expression.
Collapse
Affiliation(s)
- Timothy T Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennyfer M Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D Kiel
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
6
|
Lio CT, Grabert G, Louadi Z, Fenn A, Baumbach J, Kacprowski T, List M, Tsoy O. Systematic analysis of alternative splicing in time course data using Spycone. Bioinformatics 2022; 39:6965022. [PMID: 36579860 PMCID: PMC9831059 DOI: 10.1093/bioinformatics/btac846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION During disease progression or organism development, alternative splicing may lead to isoform switches that demonstrate similar temporal patterns and reflect the alternative splicing co-regulation of such genes. Tools for dynamic process analysis usually neglect alternative splicing. RESULTS Here, we propose Spycone, a splicing-aware framework for time course data analysis. Spycone exploits a novel IS detection algorithm and offers downstream analysis such as network and gene set enrichment. We demonstrate the performance of Spycone using simulated and real-world data of SARS-CoV-2 infection. AVAILABILITY AND IMPLEMENTATION The Spycone package is available as a PyPI package. The source code of Spycone is available under the GPLv3 license at https://github.com/yollct/spycone and the documentation at https://spycone.readthedocs.io/en/latest/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chit Tong Lio
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, Hamburg 22607, Germany,Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Gordon Grabert
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig 38106, Germany,Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig 38106, Germany
| | - Zakaria Louadi
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, Hamburg 22607, Germany,Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Amit Fenn
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, Hamburg 22607, Germany,Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, Hamburg 22607, Germany,Institute of Mathematics and Computer Science, University of Southern Denmark, Odense 5000, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig 38106, Germany,Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig 38106, Germany
| | | | - Olga Tsoy
- To whom correspondence should be addressed.
| |
Collapse
|
7
|
Wang C, Zhang X, Zeng Z, Song F, Lin Z, Chen L, Cai Z. Transcriptome Analysis Explored the Differential Genes’ Expression During the Development of the Stropharia rugosoannulata Fruiting Body. Front Genet 2022; 13:924050. [PMID: 35903349 PMCID: PMC9318406 DOI: 10.3389/fgene.2022.924050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Stropharia rugosoannulata (S. rugosoannulata) is a fungus with great edible and nutritional values; however, the development mechanism of its fruiting body has not been studied. Thus, this study aimed to analyze the differentially expressed genes (DEGs) in four stages; primordia stage (Sra1), young mushroom stage (Sra2), picking stage (Sra3), and opening umbrella stage (Sra4). Therefore, total RNA was extracted for further RNA-sequencing analysis. In three pairwise comparison groups (PCGs), Sra1 vs. Sra2, Sra2 vs. Sra3, and Sra3 vs. Sra4, a total of 3,112 DEGs were identified among the three PCGs. A GO analysis of the DEGs showed that there were 21 terms significantly enriched in Sra1 vs. Sra2 PCG. There was no significantly enriched GO term in the other two PCGs. Furthermore, KEGG pathway analysis showed that these DEGs were mainly enriched in glucose and amino acid metabolisms. Moreover we found that intron retention (IR) and the alternative 3′ splice site (A3SS) accounted for more than 80%. The development of the S. rugosoannulata fruiting body mainly involved glucose and amino acid metabolisms. IR and A3SS were the two main types of ASE, which played an important role in the development and maturation of the S. rugosoannulata fruiting body.
Collapse
Affiliation(s)
- Cui Wang
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Xunjie Zhang
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhiheng Zeng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Feifei Song
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhen Lin
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Liangjun Chen
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhixin Cai
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Zhixin Cai,
| |
Collapse
|
8
|
Van Otterloo E, Milanda I, Pike H, Thompson JA, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. eLife 2022; 11:e70511. [PMID: 35333176 PMCID: PMC9038197 DOI: 10.7554/elife.70511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here, we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2ß, within the early embryonic ectoderm of the mouse leads to major alterations in the craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. We also determined that the mutant clefting phenotypes that correlated with reduced WNT signaling could be rescued by Wnt1 ligand overexpression in the ectoderm. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Periodontics, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isaac Milanda
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hamish Pike
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jamie A Thompson
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital ColoradoAuroraUnited States
| |
Collapse
|
9
|
Forman TE, Dennison BJC, Fantauzzo KA. The Role of RNA-Binding Proteins in Vertebrate Neural Crest and Craniofacial Development. J Dev Biol 2021; 9:34. [PMID: 34564083 PMCID: PMC8482138 DOI: 10.3390/jdb9030034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.
Collapse
Affiliation(s)
| | | | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.E.F.); (B.J.C.D.)
| |
Collapse
|
10
|
Dennison BJC, Larson ED, Fu R, Mo J, Fantauzzo KA. Srsf3 mediates alternative RNA splicing downstream of PDGFRα signaling in the facial mesenchyme. Development 2021; 148:269256. [PMID: 34184034 DOI: 10.1242/dev.199448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) is crucial for mammalian craniofacial development, although the mechanisms by which the activity of downstream intracellular effectors is regulated to mediate gene expression changes have not been defined. We find that the RNA-binding protein Srsf3 is phosphorylated at Akt consensus sites downstream of PI3K-mediated PDGFRα signaling in mouse palatal mesenchyme cells, leading to its nuclear translocation. We further demonstrate that ablation of Srsf3 in the mouse neural crest lineage leads to facial clefting due to defective cranial neural crest cell proliferation and survival. Finally, we show that Srsf3 regulates the alternative RNA splicing of transcripts encoding protein kinases in the mouse facial process mesenchyme to regulate PDGFRα-dependent intracellular signaling. Collectively, our findings reveal that alternative RNA splicing is an important mechanism of gene expression regulation downstream of PI3K/Akt-mediated PDGFRα signaling in the facial mesenchyme and identify Srsf3 as a critical regulator of craniofacial development.
Collapse
Affiliation(s)
- Brenna J C Dennison
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julia Mo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katherine A Fantauzzo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Samuels BD, Aho R, Brinkley JF, Bugacov A, Feingold E, Fisher S, Gonzalez-Reiche AS, Hacia JG, Hallgrimsson B, Hansen K, Harris MP, Ho TV, Holmes G, Hooper JE, Jabs EW, Jones KL, Kesselman C, Klein OD, Leslie EJ, Li H, Liao EC, Long H, Lu N, Maas RL, Marazita ML, Mohammed J, Prescott S, Schuler R, Selleri L, Spritz RA, Swigut T, van Bakel H, Visel A, Welsh I, Williams C, Williams TJ, Wysocka J, Yuan Y, Chai Y. FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development 2020; 147:dev191213. [PMID: 32958507 PMCID: PMC7522026 DOI: 10.1242/dev.191213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.
Collapse
Affiliation(s)
- Bridget D Samuels
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Aho
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - James F Brinkley
- Structural Informatics Group, Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Alejandro Bugacov
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Alberta, Canada
| | - Karissa Hansen
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan E Hooper
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Carl Kesselman
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Pediatrics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Hong Li
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Eric C Liao
- Massachusetts General Hospital, Plastic and Reconstructive Surgery, Boston, MA 02114, USA
| | - Hannah Long
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jaaved Mohammed
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara Prescott
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert Schuler
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Tomek Swigut
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Ian Welsh
- Program in Craniofacial Biology, Departments of Orofacial Sciences and of Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cristina Williams
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA 90292, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Joanna Wysocka
- Departments of Chemical and Systems Biology and of Developmental Biology, Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|