1
|
Johnson K, Bray JF, Heaps CL. Sexually dimorphic mechanisms of H 2O 2-mediated dilation in porcine coronary arterioles with ischemia and endurance exercise training. J Appl Physiol (1985) 2025; 138:950-963. [PMID: 40059640 DOI: 10.1152/japplphysiol.00761.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
We determined the impact of sex on H2O2-mediated dilation in coronary arterioles and the contribution of K+ channels after exercise training in ischemic heart disease. We hypothesized that arterioles from male and female swine would similarly display impaired H2O2-induced dilation after chronic occlusion that would be corrected by exercise training. Yucatan miniswine were surgically instrumented with an ameroid constrictor around the proximal left circumflex artery, gradually inducing occlusion and a collateral-dependent myocardium. Arterioles from the left anterior descending artery myocardial region served as nonoccluded controls. Eight weeks postoperatively, swine of each sex were separated into sedentary and exercise-trained (progressive treadmill regimen; 5 days/wk for 14 wk) groups. Collateral-dependent arterioles of sedentary female pigs displayed impaired sensitivity to H2O2 that was reversed with exercise training. In contrast, male pigs exhibited enhanced sensitivity to H2O2 in collateral-dependent versus nonoccluded arterioles in both sedentary and exercise-trained groups. Large-conductance, calcium-dependent K+ (BKCa) and 4-aminopyridine (AP)-sensitive voltage-gated K+ (Kv) channels contributed to H2O2-mediated dilation in nonoccluded and collateral-dependent arterioles of exercise-trained females, but not in arterioles of sedentary female or sedentary or exercise-trained male swine. BKCa channel, protein kinase A (PKA), and protein kinase G (PKG) protein levels were not significantly different between groups, nor were kinase enzymatic activities. Taken together, our studies suggest that in female swine, exercise training stimulates the coupling of H2O2 signaling with BKCa and 4-AP-sensitive Kv channels, compensating for impaired dilation in collateral-dependent arterioles. Interestingly, coronary arterioles from neither sedentary female or male swine, regardless of training status, depended upon BKCa or 4-AP-sensitive Kv channels for H2O2-mediated dilation.NEW & NOTEWORTHY The current studies reveal sexually dimorphic adaptations to H2O2-mediated dilation, and unique contributions of K+ channels, in coronary arterioles from swine subjected to chronic ischemia and exercise training; findings important for development of therapeutic strategies. In female swine, chronic ischemia attenuates dilation, which is reversed by exercise training via BKCa and Kv channel stimulation. In male swine, ischemia enhances dilation to H2O2, which is further augmented by exercise training and independent of BKCa and Kv channels.
Collapse
Affiliation(s)
- Kalen Johnson
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Jeff F Bray
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
2
|
Zhuang W, Park M, Jeong J, Kim HR, Jang Y, Park H, Na S, Li H, Park WS. Blockade of Voltage-Gated K + Channels in Rabbit Coronary Arterial Smooth Muscle Cells by the Antipsychotic Drug Zotepine. J Appl Toxicol 2025; 45:685-693. [PMID: 39653067 DOI: 10.1002/jat.4740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 03/08/2025]
Abstract
Zotepine is a second-generation antipsychotic that demonstrates significant efficacy in antagonizing D2 and 5-HT2A receptors. Although clinical investigations have shown that administering zotepine is associated with an increased prevalence of hyperglycemia and a heightened risk of cardiovascular disease, the side effects of zotepine on voltage-gated K+ (Kv) channels have not been established. Zotepine suppressed the vascular Kv channels in rabbit coronary arterial smooth muscle cells in a concentration-dependent manner, with an IC50 of 5.3 ± 0.4 μM and a Hill coefficient of 1.6 ± 0.2. The decay rate of inactivation was significantly accelerated by zotepine. Applying zotepine (10 μM) shifted the steady-state inactivation curve in a negative direction. Applying train pulses at 1 and 2 Hz resulted in a progressive increase in blockage of the Kv currents by zotepine. Furthermore, zotepine prolonged the recovery time from inactivation. Although pretreatment with the Kv2.1 subtype inhibitor stromatoxin-1 and the Kv7 subtype inhibitor linopirdine did not change the degree of zotepine-induced inhibition of Kv currents, pretreatment with the Kv1.5 channel inhibitor DPO-1 decreased the inhibitory effects of zotepine on Kv currents. Zotepine also induced membrane depolarization. These results indicate that zotepine inhibits Kv currents (mainly Kv1.5 subtype) in dose-, time-, and use (state)-dependent manners by changing the steady-state inactivation curve.
Collapse
MESH Headings
- Animals
- Rabbits
- Coronary Vessels/drug effects
- Coronary Vessels/cytology
- Coronary Vessels/metabolism
- Antipsychotic Agents/toxicity
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Potassium Channels, Voltage-Gated/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Potassium Channel Blockers/toxicity
- Potassium Channel Blockers/pharmacology
- Male
- Dose-Response Relationship, Drug
Collapse
Affiliation(s)
- Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - YeEun Jang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
3
|
Rapsinski GJ, Michaels LA, Hill M, Yarrington KD, Haas AL, D’Amico EJ, Armbruster CR, Zemke A, Limoli D, Bomberger JM. Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm. PLoS Pathog 2024; 20:e1011453. [PMID: 38820569 PMCID: PMC11168685 DOI: 10.1371/journal.ppat.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.
Collapse
Affiliation(s)
- Glenn J. Rapsinski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
- Division of Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lia A. Michaels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Madison Hill
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison L. Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Emily J. D’Amico
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Anna Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dominique Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| |
Collapse
|
4
|
Här K, Lysenko NN, Dimitrova D, Schlüter T, Zavaritskaya O, Kamkin AG, Mladenov M, Grisk O, Köhler R, Gagov H, Schubert R. Kv2.1 Channels Prevent Vasomotion and Safeguard Myogenic Reactivity in Rat Small Superior Cerebellar Arteries. Cells 2023; 12:1989. [PMID: 37566068 PMCID: PMC10416909 DOI: 10.3390/cells12151989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Vascular smooth muscle voltage-gated potassium (Kv) channels have been proposed to contribute to myogenic autoregulation. Surprisingly, in initial experiments, we observed that the Kv2 channel inhibitor stromatoxin induced vasomotion without affecting myogenic tone. Thus, we tested the hypothesis that Kv2 channels contribute to myogenic autoregulation by fine-tuning the myogenic response. Expression of Kv2 channel mRNA was determined using real-time PCR and 'multiplex' single-cell RT-PCR. Potassium currents were measured using the patch-clamp technique. Contractile responses of intact arteries were studied using isobaric myography. Expression of Kv2.1 but not Kv2.2 channels was detected in intact rat superior cerebellar arteries and in single smooth muscle cells. Stromatoxin, a high-affinity inhibitor of Kv2 channels, reduced smooth muscle Kv currents by 61% at saturating concentrations (EC50 36 nmol/L). Further, stromatoxin (10-100 nmol/L) induced pronounced vasomotion in 48% of the vessels studied. In vessels not exhibiting vasomotion, stromatoxin did not affect myogenic reactivity. Notably, in vessels exhibiting stromatoxin-induced vasomotion, pressure increases evoked two effects: First, they facilitated the occurrence of random vasodilations and/or vasoconstrictions, disturbing the myogenic response (24% of the vessels). Second, they modified the vasomotion by decreasing its amplitude and increasing its frequency, thereby destabilizing myogenic tone (76% of the vessels). Our study demonstrates that (i) Kv2.1 channels are the predominantly expressed Kv channels in smooth muscle cells of rat superior cerebellar arteries, and (ii) Kv2.1 channels provide a novel type of negative feedback mechanism in myogenic autoregulation by preventing vasomotion and thereby safeguarding the myogenic response.
Collapse
Affiliation(s)
- Kristina Här
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Natalia N. Lysenko
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Torsten Schlüter
- Institute of Physiology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Olga Zavaritskaya
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andrej G. Kamkin
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mitko Mladenov
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, 1000 Skopje, North Macedonia
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Ralf Köhler
- ARAID-IACS, UIT University Hospital Miguel Servet, 50009 Zaragoza, Spain
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164 Sofia, Bulgaria
| | - Rudolf Schubert
- European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany
| |
Collapse
|
5
|
Schubert R, Gaynullina D, Shvetsova A, Tarasova OS. Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques. Front Physiol 2023; 14:1176748. [PMID: 37168231 PMCID: PMC10165122 DOI: 10.3389/fphys.2023.1176748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
The study of the mechanisms of regulation of vascular tone is an urgent task of modern science, since diseases of the cardiovascular system remain the main cause of reduction in the quality of life and mortality of the population. Myography (isometric and isobaric) of isolated blood vessels is one of the most physiologically relevant approaches to study the function of cells in the vessel wall. On the one hand, cell-cell interactions as well as mechanical stretch of the vessel wall remain preserved in myography studies, in contrast to studies on isolated cells, e.g., cell culture. On the other hand, in vitro studies in isolated vessels allow control of numerous parameters that are difficult to control in vivo. The aim of this review was to 1) discuss the specifics of experimental design and interpretation of data obtained by myography and 2) highlight the importance of the combined use of myography with various complementary techniques necessary for a deep understanding of vascular physiology.
Collapse
Affiliation(s)
- Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- *Correspondence: Rudolf Schubert,
| | - Dina Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Olga S. Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
van der Horst J, Rognant S, Hellsten Y, Aalkjær C, Jepps TA. Dynein Coordinates β2-Adrenoceptor-Mediated Relaxation in Normotensive and Hypertensive Rat Mesenteric Arteries. Hypertension 2022; 79:2214-2227. [PMID: 35929419 DOI: 10.1161/hypertensionaha.122.19351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The voltage-gated potassium channel (Kv)7.4 and Kv7.5 channels contribute to the β-adrenoceptor-mediated vasodilatation. In arteries from hypertensive rodents, the Kv7.4 channel is downregulated and function attenuated, which contributes to the reduced β-adrenoceptor-mediated vasodilatation observed in these arteries. Recently, we showed that disruption of the microtubule network, with colchicine, or inhibition of the microtubule motor protein, dynein, with ciliobrevin D, enhanced the membrane abundance and function of Kv7.4 channels in rat mesenteric arteries. This study aimed to determine whether these pharmacological compounds can improve Kv7.4 function in third-order mesenteric arteries from the spontaneously hypertensive rat, thereby restoring the β-adrenoceptor-mediated vasodilatation. METHODS Wire and intravital myography was performed on normotensive and hypertensive male rat mesenteric arteries and immunostaining was performed on isolated smooth muscle cells from the same arteries. RESULTS Using wire and intravital microscopy, we show that ciliobrevin D enhanced the β-adrenoceptor-mediated vasodilatation by isoprenaline. This effect was inhibited partially by the Kv7 channel blocker linopirdine and was dependent on an increased functional contribution of the β2-adrenoceptor to the isoprenaline-mediated relaxation. In mesenteric arteries from the spontaneously hypertensive rat, ciliobrevin D and colchicine both improved the isoprenaline-mediated vasorelaxation and relaxation to the Kv7.2 -7.5 activator, ML213. Immunostaining confirmed ciliobrevin D enhanced the membrane abundance of Kv7.4. As well as an increase in the function of Kv7.4, the functional changes were associated with an increase in the contribution of β2-adrenoceptor following isoprenaline treatment. Immunostaining experiments showed ciliobrevin D prevented isoprenaline-mediated internalizationof the β2-adrenoceptor. CONCLUSIONS Overall, these data show that colchicine and ciliobrevin D can induce a β2-adrenoceptor-mediated vasodilatation in arteries from the spontaneously hypertensive rat as well as reinstating Kv7.4 channel function.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Department of Biomedical Sciences (J.v.d.H., S.R., C.A., T.A.J.), University of Copenhagen, Denmark.,The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (J.v.d.H., Y.H.), University of Copenhagen, Denmark
| | - Salomé Rognant
- Department of Biomedical Sciences (J.v.d.H., S.R., C.A., T.A.J.), University of Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (J.v.d.H., Y.H.), University of Copenhagen, Denmark
| | - Christian Aalkjær
- Department of Biomedical Sciences (J.v.d.H., S.R., C.A., T.A.J.), University of Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Denmark (C.A.)
| | - Thomas A Jepps
- Department of Biomedical Sciences (J.v.d.H., S.R., C.A., T.A.J.), University of Copenhagen, Denmark
| |
Collapse
|
7
|
Shvetsova AA, Lazarenko VS, Gaynullina DK, Tarasova OS, Schubert R. TWIK-Related Acid-Sensitive Potassium Channels (TASK-1) Emerge as Contributors to Tone Regulation in Renal Arteries at Alkaline pH. Front Physiol 2022; 13:895863. [PMID: 35669582 PMCID: PMC9163564 DOI: 10.3389/fphys.2022.895863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Aim: TASK-1 channels are established regulators of pulmonary artery tone but their contribution to the regulation of vascular tone in systemic arteries is poorly understood. We tested the hypothesis that TASK-1 channel functional impact differs among systemic vascular beds, that this is associated with differences in their expression and may increase with alkalization of the extracellular environment. Therefore, we evaluated the expression level of TASK-1 channels and their vasomotor role in mesenteric and renal arteries.Methods: Pulmonary, mesenteric and renal arteries from male Wistar rats were used for TASK-1 channel mRNA (qPCR) and protein content (Western blotting) measurements. The functional role of TASK-1 channels was studied by wire myography using the TASK-1 channel blocker AVE1231. In some experiments, the endothelium was removed with a rat whisker.Results: Expression levels of both mRNA and protein of the TASK-1 channel pore-forming subunit were highest in pulmonary arteries, lowest in mesenteric arteries and had an intermediate value in renal arteries. Blockade of TASK-1 channels by 1 µM AVE1231 increased U46619-induced contractile responses of pulmonary arteries but did not affect basal tone and contractile responses to methoxamine of mesenteric and renal arteries at physiological extracellular pH (pHo = 7.41). At alkaline extracellular pH = 7.75 (increase of NaHCO3 to 52 mM) AVE1231 evoked the development of basal tone and increased contractile responses to low concentrations of methoxamine in renal but not mesenteric arteries. This effect was independent of the endothelium.Conclusion: In the rat systemic circulation, TASK-1 channels are abundant in renal arteries and have an anticontractile function under conditions of extracellular alkalosis.
Collapse
Affiliation(s)
| | | | - Dina K. Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga S. Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- *Correspondence: Rudolf Schubert,
| |
Collapse
|
8
|
de Donato A, Buonincontri V, Borriello G, Martinelli G, Mone P. The dopamine system: insights between kidney and brain. Kidney Blood Press Res 2022; 47:493-505. [PMID: 35378538 DOI: 10.1159/000522132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the most common diseases in adult age and it is typical of older adults. Recent data suggest that almost half of the elders have CKD. It is now clear that CKD is accompanied, in the early stages, by cognitive impairment, together with depression and subtle abnormalities in motor control (such as gait and balance alterations). SUMMARY Several data suggest a link between brain dopamine and kidney diseases. Metabolic syndrome and diabetes can affect dopamine neuron survival (leading to Parkinson's Disease). Several uremic toxins in CKD (uric acid, indoxyl sulphate) and trace elements accumulating in CKD (aluminium, manganese) can also modify the dopaminergic system. Hormones produced by the kidney such as vitamin D are neuroprotective for dopamine neurons. Dopaminergic drugs are useful for the treatment of a common sleep disorder in CKD, the restless legs syndrome. However, experiments on animal models of CKD show conflicting results regarding a modification of dopamine neurons. KEY MESSAGES Several observations suggest a limited relevance of the dopaminergic system in CKD-related cognitive impairment. However, a common sleep disturbance in CKD, the restless leg syndrome, improves with dopaminergic drugs. Therefore, it remains to be established the role of the dopamine system in subtle motor dysfunction observed in CKD, such as tremors, gait alterations, and central sleep apnea.
Collapse
Affiliation(s)
- Antonio de Donato
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Veronica Buonincontri
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gianmarco Borriello
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Giuseppe Martinelli
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
- ASL Napoli, Naples, Italy
| | - Pasquale Mone
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
- ASL Avellino, Avellino, Italy
| |
Collapse
|
9
|
Jepps TA. Kv7 channel trafficking by the microtubule network in vascular smooth muscle. Acta Physiol (Oxf) 2021; 232:e13692. [PMID: 34021973 PMCID: PMC8365713 DOI: 10.1111/apha.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
In arterial smooth muscle cells, changes in availability of integral membrane proteins influence the regulation of blood flow and blood pressure, which is critical for human health. However, the mechanisms that coordinate the trafficking and membrane expression of specific receptors and ion channels in vascular smooth muscle are poorly understood. In the vasculature, very little is known about microtubules, which form a road network upon which proteins can be transported to and from the cell membrane. This review article summarizes the impact of the microtubule network on arterial contractility, highlighting the importance of the network, with an emphasis on our recent findings regarding the trafficking of the voltage‐dependent Kv7 channels.
Collapse
Affiliation(s)
- Thomas A Jepps
- Vascular Biology Group Department of Biomedical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen N Denmark
| |
Collapse
|
10
|
Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. Int J Mol Sci 2021; 22:ijms22115413. [PMID: 34063769 PMCID: PMC8196626 DOI: 10.3390/ijms22115413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Maturation of the cardiovascular system is associated with crucial structural and functional remodeling. Thickening of the arterial wall, maturation of the sympathetic innervation, and switching of the mechanisms of arterial contraction from calcium-independent to calcium-dependent occur during postnatal development. All these processes promote an almost doubling of blood pressure from the moment of birth to reaching adulthood. This review focuses on the developmental alterations of potassium channels functioning as key smooth muscle membrane potential determinants and, consequently, vascular tone regulators. We present evidence that the pattern of potassium channel contribution to vascular control changes from Kir2, Kv1, Kv7 and TASK-1 channels to BKCa channels with maturation. The differences in the contribution of potassium channels to vasomotor tone at different stages of postnatal life should be considered in treatment strategies of cardiovascular diseases associated with potassium channel malfunction.
Collapse
Affiliation(s)
- Anastasia A. Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (D.K.G.); (O.S.T.)
- Correspondence:
| | - Dina K. Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (D.K.G.); (O.S.T.)
- Department of Physiology, Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga S. Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; (D.K.G.); (O.S.T.)
- Laboratory of Exercise Physiology, State Research Center of the Russian Federation-Institute for Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, 86159 Augsburg, Germany;
| |
Collapse
|