1
|
Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Harris E, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of Calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. FASEB J 2024; 38:e23825. [PMID: 39031532 PMCID: PMC11299996 DOI: 10.1096/fj.202400697r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.
Collapse
Affiliation(s)
- Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - C. Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Erin Harris
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Simona Boncompagni
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| |
Collapse
|
2
|
Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575391. [PMID: 38293127 PMCID: PMC10827051 DOI: 10.1101/2024.01.12.575391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD2A pathology.
Collapse
Affiliation(s)
- Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - C. Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| |
Collapse
|
3
|
Searching for Mechanisms Underlying the Assembly of Calcium Entry Units: The Role of Temperature and pH. Int J Mol Sci 2023; 24:ijms24065328. [PMID: 36982401 PMCID: PMC10049691 DOI: 10.3390/ijms24065328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a mechanism that allows muscle fibers to recover external Ca2+, which first enters the cytoplasm andthen, via SERCA pump, also refills the depleted intracellular stores (i.e., the sarcoplasmic reticulum, SR). We recently discovered that SOCE is mediated by Calcium Entry Units (CEUs), intracellular junctions formed by: (i) SR stacks containing STIM1; and (ii) I-band extensions of the transverse tubule (TT) containing Orai1. The number and size of CEUs increase during prolonged muscle activity, though the mechanisms underlying exercise-dependent formation of new CEUs remain to be elucidated. Here, we first subjected isolated extensor digitorum longus (EDL) muscles from wild type mice to an exvivo exercise protocol and verified that functional CEUs can assemble alsoin the absence of blood supply and innervation. Then, we evaluated whetherparameters that are influenced by exercise, such as temperature and pH, may influence the assembly of CEUs. Results collected indicate that higher temperature (36 °C vs. 25 °C) and lower pH (7.2 vs. 7.4) increase the percentage of fibers containing SR stacks, the n. of SR stacks/area, and the elongation of TTs at the I band. Functionally, assembly of CEUs at higher temperature (36 °C) or at lower pH (7.2) correlates with increased fatigue resistance of EDL muscles in the presence of extracellular Ca2+. Taken together, these results indicate that CEUs can assemble in isolated EDL muscles and that temperature and pH are two of the possible regulators of CEU formation.
Collapse
|
4
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|