1
|
Li N, Hu Z, Zhang N, Liang Y, Feng Y, Ding W, Cheng L, Zheng Y. Pairwise analysis of gene expression for oral squamous cell carcinoma via a large-scale transcriptome integration. J Cell Mol Med 2024; 28:e70153. [PMID: 39470584 PMCID: PMC11520439 DOI: 10.1111/jcmm.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Among all cancers occurring in the head and neck region, oral squamous cell carcinoma (OSCC) is the most common oral malignant tumours characterized by its aggressiveness and metastasis. The development of transcriptomics technology has greatly facilitated the diagnosis of various cancers. However, identifying genetic biomarkers is limited by data from a single batch of OSCC samples, and integrating analysis across different platforms remains a great challenge. In this study, we integrated five OSCC transcriptome datasets using an innovative strategy capable of mitigating batch effect, and extracting information from different datasets based on changes in the relative expression of gene pairs. By leveraging a machine learning method, we developed a prediction model including 27 differential gene pairs (DGPs) to discriminate OSCC from control samples, achieving an area under the receiver operating characteristic curve (AUC) of 0.8987 for the training set. Moreover, the model demonstrated commendable performance in four external validation sets, with AUCs of 0.9926, 0.9688, 0.8052 and 0.8565, respectively. Subsequently, a prognostic model was constructed based on six key gene pairs through univariate and multivariate Cox regression analysis. The AUCs of the model at 1-year and 3-year overall survival time prediction were 0.717 and 0.779 in an independent dataset. Our result demonstrates the effectiveness of this new method of integrating data and identifying DGPs. Using DGPs can significantly improve the performance of both diagnostic and prognostic models.
Collapse
Affiliation(s)
- Nan Li
- Department of StomatologyShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Zunkai Hu
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Ning Zhang
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yining Liang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yating Feng
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wanfu Ding
- Department of Information and TechnologyShenzhen People's HospitalShenzhenGuangdongChina
| | - Lixin Cheng
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yuyan Zheng
- Department of StomatologyShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| |
Collapse
|
2
|
Wenjie W, Rui L, Dongyong W, Lin C. Exploring the prognostic landscape of oral squamous cell carcinoma through mitochondrial damage-related genes. BMC Med Genomics 2024; 17:208. [PMID: 39134997 PMCID: PMC11321089 DOI: 10.1186/s12920-024-01985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC), the most prevalent form of oral cancer, poses significant challenges to the medical community due to its high recurrence rate and low survival rate. Mitochondrial Damage-Related Genes (MDGs) have been closely associated with the occurrence, metastasis, and progression of OSCC. Consequently, we constructed a prognostic model for OSCC based on MDGs and identified potential mitochondrial damage-related biomarkers. Gene expression profiles and relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. Differential analysis was conducted to identify MDGs associated with OSCC. COX analysis was employed to screen seven prognosis-related MDGs and build a prognostic prediction model for OSCC. Cases were categorized into low-risk or high-risk groups based on the optimal risk score threshold. Kaplan-Meier (KM) analysis revealed significant survival differences (P < 0.05). Additionally, the area under the ROC curve (AUC) for patient survival at 1 year, 3 years, and 5 years were 0.687, 0.704, and 0.70, respectively, indicating a high long-term predictive accuracy of the prognostic model. To enhance predictive accuracy, age, gender, risk score, and TN staging were incorporated into a nomogram and verified using calibration curves. Risk scoring based on MDGs was identified as a potential independent prognostic biomarker. Furthermore, BID and SLC25A20 were identified as two potential independent mitochondrial damage-related prognostic biomarkers, offering new therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Wen Wenjie
- Anhui Province Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, 241002, China
- Oral Disease Research Center, School of Stomatology, Wannan Medical College, Wuhu, 241002, China
| | - Li Rui
- Anhui Province Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, 241002, China
- Oral Disease Research Center, School of Stomatology, Wannan Medical College, Wuhu, 241002, China
| | - Wang Dongyong
- Anhui Province Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, 241002, China
| | - Chai Lin
- Anhui Province Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, 241002, China.
- Oral Disease Research Center, School of Stomatology, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
3
|
Gao J, Yang Y, Yin W, Zhao X, Qu Y, Yang X, Wu Y, Xiang L, Man Y. A nomogram prediction of implant apical non-coverage on bone-added transcrestal sinus floor elevation: A retrospective cohort study. Clin Oral Implants Res 2024; 35:282-293. [PMID: 38108637 DOI: 10.1111/clr.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES To identify the risk indicators and develop and validate a nomogram prediction model of implant apical non-coverage by comprehensively analyzing clinical and radiographic factors in bone-added transcrestal sinus floor elevation (TSFE). MATERIAL AND METHODS A total of 260 implants in 195 patients receiving bone-added TSFE were included in the study. The population was divided into a development (180 implants) and a validation (80 implants) cohort. According to 6 months post-surgery radiographic images, implants were categorized as "apical non-coverage" or "apical covered." The association of risk factors including clinical and radiographic parameters with implant apical non-coverage was assessed using regression analyses. A nomogram prediction model was developed, and its validation and discriminatory ability were analyzed. RESULTS The nomogram predicting bone-added TSFE's simultaneously placed implant's apex non-coverage after 6 months. This study revealed that sinus angle, endo-sinus bone gain, implant protrusion length, graft contact walls, and distal angle were predictors of implant apical non-coverage. The generated nomogram showed a strong predictive capability (area under the curve [AUC] = 0.845), confirmed by internal validation using 10-fold cross-validation (Median AUC of 0.870) and temporal validation (AUC = 0.854). The calibration curve and decision curve analysis demonstrated good performance and high net benefit of the nomogram, respectively. CONCLUSIONS The clinical implementation of the present nomogram is suitable for predicting the apex non-coverage of implants placed simultaneously with bone-added TSFE after 6 months.
Collapse
Affiliation(s)
- Jiayu Gao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wumeng Yin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangqi Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingmei Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ai J, Tan Y, Liu B, Song Y, Wang Y, Xia X, Fu Q. Systematic establishment and verification of an epithelial-mesenchymal transition gene signature for predicting prognosis of oral squamous cell carcinoma. Front Genet 2023; 14:1113137. [PMID: 37636263 PMCID: PMC10447895 DOI: 10.3389/fgene.2023.1113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Objective: Epithelial-mesenchymal transition (EMT) is linked to an unfavorable prognosis in oral squamous cell carcinoma (OSCC). Here, we aimed to develop an EMT gene signature for OSCC prognosis. Methods: In TCGA dataset, prognosis-related EMT genes with p < 0.05 were screened in OSCC. An EMT gene signature was then conducted with LASSO method. The efficacy of this signature in predicting prognosis was externally verified in the GSE41613 dataset. Correlations between this signature and stromal/immune scores and immune cell infiltration were assessed by ESTIMATE and CIBERSORT algorithms. GSEA was applied for exploring significant signaling pathways activated in high- and low-risk phenotypes. Expression of each gene was validated in 40 paired OSCC and normal tissues via RT-qPCR. Results: A prognostic 9-EMT gene signature was constructed in OSCC. High risk score predicted poorer clinical outcomes than low risk score. ROCs confirmed the well performance on predicting 1-, 3- and 5-year survival. Multivariate cox analysis revealed that this signature was independently predictive of OSCC prognosis. The well predictive efficacy was validated in the GSE41613 dataset. Furthermore, this signature was distinctly related to stromal/immune scores and immune cell infiltration in OSCC. Distinct pathways were activated in two subgroups. After validation, AREG, COL5A3, DKK1, GAS1, GPX7 and PLOD2 were distinctly upregulated and SFRP1 was downregulated in OSCC than normal tissues. Conclusion: Our data identified and verified a robust EMT gene signature in OSCC, which provided a novel clinical tool for predicting prognosis and several targets against OSCC therapy.
Collapse
Affiliation(s)
- Jun Ai
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yaqin Tan
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bo Liu
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuhong Song
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yanqin Wang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qicheng Fu
- Department of Stomatology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
5
|
Pan L, She H, Wang K, Xia W, Tang H, Fan Y, Ye J. Characterization of the m 6A regulator-mediated methylation modification patterns in oral squamous cell carcinoma. Sci Rep 2023; 13:6617. [PMID: 37095314 PMCID: PMC10126108 DOI: 10.1038/s41598-023-33891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
N6-methyladenosine (m6A) is a form of posttranscriptional modification that plays important roles in cancer including oral squamous cell carcinoma (OSCC). Most studies to date have focused on a limited number of regulators and oncogenic pathways, thus failing to provide comprehensive insight into the dynamic effects of m6A modification. In addition, the role of m6A modification in shaping immune cell infiltration in OSCC has yet to be clarified. This study was designed to assess m6A modification dynamics in OSCC and to understand how such modifications influence clinical immunotherapeutic treatment outcomes. m6A modification patterns linked with 23 m6A regulators were analyzed in 437 OSCC patients from TCGA and GEO cohorts. These patterns were then quantified through m6A score based on algorithms derived from a principal component analysis (PCA) approach. The m6A modification patterns of OSCC samples were grouped into two clusters based on the m6A regulators expression, and immune cell infiltration was linked with the 5-year survival outcomes of patients in these clusters. 1575 genes associated with OSCC patient prognosis were identified and used to re-cluster these samples into two groups. Patients in clusters exhibiting higher levels of m6A regulator expression exhibited poorer overall survival (OS), whereas patients with high m6A scores survived for longer (p < 0.001). The overall mortality rates in the groups of patients with low and high m6A scores were 55% and 40%, respectively, and the m6A score distributions in clusters of patients grouped by m6A modification patterns and gene expression further supported the link between a high m6A score and better prognostic outcomes. Immunophenoscore (IPS) values for patients in different m6A score groups suggested that the use of PD-1-specific antibodies or CTLA-4 inhibitors alone or in combination would yield superior treatment outcomes in patients in the high-m6A score group relative to the low-m6A score group. m6A modification patterns are relevant to heterogeneity in OSCC. Detailed analyses of m6A modification patterns may thus offer novel insight regarding immune cell infiltration within the OSCC tumor microenvironment, guiding novel efforts to provide patients with more effective immunotherapeutic interventions.
Collapse
Affiliation(s)
- Lu Pan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - He She
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Keyi Wang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Wenhui Xia
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Haonan Tang
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Yuan Fan
- Department of Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China.
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, 136# Hanzhong Road, Nanjing, 210000, Jiangsu, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China.
| |
Collapse
|
6
|
Wang X, Song H, Liang J, Jia Y, Zhang Y. Abnormal expression of HADH, an enzyme of fatty acid oxidation, affects tumor development and prognosis (Review). Mol Med Rep 2022; 26:355. [PMID: 36239258 PMCID: PMC9607826 DOI: 10.3892/mmr.2022.12871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Tumor occurrence and progression are closely associated with abnormal energy metabolism and energy metabolism associated with glucose, proteins and lipids. The reprogramming of energy metabolism is one of the hallmarks of cancer. As a form of energy metabolism, fatty acid metabolism includes fatty acid uptake, de novo synthesis and β‑oxidation. In recent years, the role of abnormal fatty acid β‑oxidation in tumors has gradually been recognized. Mitochondrial trifunctional protein (MTP) serves an important role in fatty acid β‑oxidation and HADH (two subtypes: α subunit, HADHA and β subunit, HADHB) are important subunits of MTP. HADH participates in the steps of 2, 3 and 4 fatty acid β‑oxidation. However, there is no review summarizing the specific role of HADH in tumors. Therefore, the present study focused on HADH as the main indicator to explore the changes in fatty acid β‑oxidation in several types of tumors. The present review summarized the changes in HADH in 11 organs (cerebrum, oral cavity, esophagus, liver, pancreas, stomach, colorectum, lymph, lung, breast, kidney), the effect of up‑ and downregulation and the relationship of HADH with prognosis. In summary, HADH can be either a suppressor or a promoter depending on where the tumor is located, which is closely associated with prognostic assessment. HADHA and HADHB have similar prognostic roles in known and comparable tumors.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Jinan, Shandong 252004, P.R. China
| | - Honghao Song
- Department of Pediatric Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Junyu Liang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Jia
- Post-doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Jinan, Shandong 252004, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
7
|
Zang J, Sun J, Xiu W, Liu X, Chai Y, Zhou Y. Low Expression of AGPAT5 Is Associated With Clinical Stage and Poor
Prognosis in Colorectal Cancer and Contributes to Tumour
Progression. Clin Med Insights Oncol 2022; 16:11795549221137399. [PMCID: PMC9716453 DOI: 10.1177/11795549221137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Colorectal cancer (CRC) has a high prevalence and poor prognosis. This study
aimed to identify biomarkers related to the clinical stage (I-IV) of
CRC. Methods: The LinkedOmics database was used as the discovery cohort, and two Gene
Expression Omnibus (GEO) databases (GSE41258 and GSE422848) served as
validation cohorts. The trend test of genes related to clinical stage (I-IV)
of CRC patients was identified by the Jonckheere-Terpstra test. The
cBioPortal database, Gene Expression Profiling Interactive Analysis (GEPIA)
and PrognoScan databases were used to explore the expression change and
prognostic value of clinical stage-related genes in CRC patients. CRC cells
overexpressed AGPAT5 were constructed and used for cell counting kit-8
(CCK-8), flow cytometric, and wound healing assays in vitro. Results: We identified four clinical stage-related genes, GSR, AGPAT5, CRLF1, and
NPR3, in CRC. The CNA frequencies of GSR, CRLF1, AGPAT5, and NPR3 occurred
in 11%, 2.4%, 13%, and 3% of patients, respectively. The expression of GSR
and AGPAT5 tended to decrease with CRC stage (I-IV) progression, and the
expression of CRLF1 and NPR3 tended to increase with CRC stage (I-IV)
progression. Compared with the normal group, AGPAT5 expression was markedly
decreased in stage IV CRC. Higher GSR and AGPAT5 expression levels were
associated with better overall survival (OS) and disease-free survival (DFS)
in CRC patients. Lower CRLF1 and NPR3 expression levels were associated with
better OS and DFS in CRC. GSR, CRLF1, AGPAT5, and NPR3 expression were
related to CRC progression, microsatellite instability, and tumour purity in
CRC. Furthermore, AGPAT5 was downregulated in CRC cell lines, and
overexpression of AGPAT5 inhibited cell proliferation and migration and
promoted cell apoptosis in CRC cells. Conclusion: Low AGPAT5 expression may serve as a poor prognostic factor and clinical
stage biomarker in CRC. In addition, AGPAT5 acts as a tumour suppressor in
CRC progression.
Collapse
Affiliation(s)
- Jia Zang
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - Juanjuan Sun
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - WenChao Xiu
- The Second Ward of Anorectal
Department, Qilu Hospital of Shandong University (Qingdao), China
| | - Xiaoshuang Liu
- Department of General Surgery, Shuguang
Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R.
China
| | - Yunsheng Chai
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China,Yunsheng Chai, Department of Colorectal
Surgery, Shanghai Changzheng Hospital, No. 415, FengYang Road, Shanghai 200003,
P.R. China.
| | - Yanyan Zhou
- Department of Colorectal Surgery,
Shanghai Changzheng Hospital, Shanghai, P.R. China
| |
Collapse
|
8
|
Li Y, Xiong JB, Jie ZG, Xiong H. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta gene as a tumour suppressor in stomach adenocarcinoma. Front Oncol 2022; 12:1069875. [PMID: 36518312 PMCID: PMC9743170 DOI: 10.3389/fonc.2022.1069875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is the most common type of gastric cancer. In this study, the functions and potential mechanisms of hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) in STAD were explored. METHODS Different bioinformatics analyses were performed to confirm HADHB expression in STAD. HADHB expression in STAD tissues and cells was also evaluated using western blot, qRT-PCR, and immunohistochemistry. Further, the viability, proliferation, colony formation, cell cycle determination, migration, and wound healing capacity were assessed, and the effects of HADHB on tumour growth, cell apoptosis, and proliferation in nude mice were determined. The upstream effector of HADHB was examined using bioinformatics analysis and dual luciferase reporter assay. GSEA was also employed for pathway enrichment analysis and the expression of Hippo-YAP pathway-related proteins was detected. RESULTS The expression of HADHB was found to be low in STAD tissues and cells. The upregulation of HADHB distinctly repressed the viability, proliferation, colony formation, cell cycle progression, migration, invasion, and wound healing of HGC27 cells, while knockdown of HADHB led to opposite effects. HADHB upregulation impeded tumour growth and cell proliferation, and enhanced apoptosis in nude mice. KLF4, whose expression was low in STAD, was identified as an upstream regulator of HADHB. KLF4 upregulation abolished the HADHB knockdown-induced tumour promoting effects in AGS cells. Further, HADHB regulates the Hippo-YAP pathway, which was validated using a pathway rescue assay. Low expression of KLF4 led to HADHB downregulation in STAD. CONCLUSION HADHB might function as a tumour suppressor gene in STAD by regulation the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Yun Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Bo Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Gang Jie
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| | - Hui Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Gastrointestinal Surgical Institute of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Tu IWH, Shannon NB, Thankappan K, Balasubramanian D, Pillai V, Shetty V, Rangappa V, Chandrasekhar NH, Kekatpure V, Kuriakose MA, Krishnamurthy A, Mitra A, Pattatheyil A, Jain P, Iyer S, Subramaniam N, Iyer NG. Risk Stratification in Oral Cancer: A Novel Approach. Front Oncol 2022; 12:836803. [PMID: 35875164 PMCID: PMC9301677 DOI: 10.3389/fonc.2022.836803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common head and neck cancer with high morbidity and mortality. Currently, treatment decisions are guided by TNM staging, which omits important negative prognosticators such as lymphovascular invasion, perineural invasion (PNI), and histologic differentiation. We proposed nomogram models based on adverse pathological features to identify candidates suitable for treatment escalation within each risk group according to the National Comprehensive Cancer Network (NCCN) guidelines. Methods Anonymized clinicopathologic data of OSCC patients from 5 tertiary healthcare institutions in Asia were divided into 3 risk groups according to the NCCN guidelines. Within each risk group, nomograms were built to predict overall survival based on histologic differentiation, histologic margin involvement, depth of invasion (DOI), extranodal extension, PNI, lymphovascular, and bone invasion. Nomograms were internally validated with precision-recall analysis and the Kaplan-Meier survival analysis. Results Low-risk patients with positive pathological nodal involvement and/or positive PNI should be considered for adjuvant radiotherapy. Intermediate-risk patients with gross bone invasion may benefit from concurrent chemotherapy. High-risk patients with positive margins, high DOI, and a high composite score of histologic differentiation, PNI, and the American Joint Committee on Cancer (AJCC) 8th edition T staging should be considered for treatment escalation to experimental therapies in clinical trials. Conclusion Nomograms built based on prognostic adverse pathological features can be used within each NCCN risk group to fine-tune treatment decisions for OSCC patients.
Collapse
Affiliation(s)
- Irene Wen-Hui Tu
- Department of Head and Neck Surgery Singapore General Hospital and National Cancer Centre Singapore and Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Nicholas Brian Shannon
- Department of Head and Neck Surgery Singapore General Hospital and National Cancer Centre Singapore and Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Krishnakumar Thankappan
- Department of Head and Neck Surgical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Deepak Balasubramanian
- Department of Head and Neck Surgical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Vijay Pillai
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Vivek Shetty
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Vidyabhushan Rangappa
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Naveen Hedne Chandrasekhar
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Vikram Kekatpure
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Moni Abraham Kuriakose
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | | | - Arun Mitra
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, India
| | - Arun Pattatheyil
- Department of Head and Neck Surgical Oncology, Tata Medical Centre, Kolkata, India
| | - Prateek Jain
- Department of Head and Neck Surgical Oncology, Tata Medical Centre, Kolkata, India
| | - Subramania Iyer
- Department of Head and Neck Surgical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Narayana Subramaniam
- Department of Head and Neck Surgical Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery Singapore General Hospital and National Cancer Centre Singapore and Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
10
|
Ji J, Li X, Zhu Y, Wang R, Yang S, Peng B, Zhou Z. Screening of periodontitis-related diagnostic biomarkers based on weighted gene correlation network analysis and machine algorithms. Technol Health Care 2022; 30:1209-1221. [PMID: 35342071 DOI: 10.3233/thc-thc213662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Periodontitis is a common oral immune inflammatory disease and early detection plays an important role in its prevention and progression. However, there are no accurate biomarkers for early diagnosis. OBJECTIVE This study screened periodontitis-related diagnostic biomarkers based on weighted gene correlation network analysis and machine algorithms. METHODS Transcriptome data and sample information of periodontitis and normal samples were obtained from the Gene Expression Omnibus (GEO) database, and key genes of disease-related modules were obtained by bioinformatics. The key genes were subjected to Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and 5 machine algorithms: Logistic Regression (LR), Random Forest (RF), Gradient Boosting Decisio Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM). Expression and correlation analysis were performed after screening the optimal model and diagnostic biomarkers. RESULTS A total of 47 candidate genes were obtained, and the LR model had the best diagnostic efficiency. The COL15A1, ICAM2, SLC15A2, and PIP5K1B were diagnostic biomarkers for periodontitis, and all of which were upregulated in periodontitis samples. In addition, the high expression of periodontitis biomarkers promotes positive function with immune cells. CONCLUSION COL15A1, ICAM2, SLC15A2 and PIP5K1B are potential diagnostic biomarkers of periodontitis.
Collapse
Affiliation(s)
- Juanjuan Ji
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xudong Li
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China.,Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yaling Zhu
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Rui Wang
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Shuang Yang
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Bei Peng
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhi Zhou
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The 2nd People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
11
|
Xu Z, Li X, Pan L, Tan R, Ji P, Tang H. Development of a lncRNA-based prognostic signature for oral squamous cell carcinoma. J Oral Pathol Med 2022; 51:358-368. [PMID: 35100473 DOI: 10.1111/jop.13281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND We aimed to establish a long noncoding RNA (lncRNA)-based signature for accurately predicting prognosis and guiding the personalized clinical management of oral squamous cell carcinoma (OSCC). METHODS OSCC RNA sequencing profiles were acquired from The Cancer Genome Atlas and Gene Expression Omnibus. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were performed to construct a lncRNA-based prognostic signature. Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves and calibration curves were used to assess the effectiveness and accuracy of the signature. Additionally, we conducted single-sample gene-set enrichment analysis to infer the different degrees of immunocyte infiltration. Weighted correlation network analysis, enrichment analysis and Spearman's correlation analysis were implemented to screen immune-related genes that interact with the lncRNA signature. RESULTS In total, 14 lncRNAs were defined as potential prognostic biomarkers. Based on these lncRNAs, patients were divided into low- and high-risk subgroups with different survival times (p < 0.001). In addition, the reliability of the prognostic signature was verified by Kaplan-Meier analysis, ROC analysis and calibration curves. Patients in the low-risk group exhibited more significant immune cell infiltration. Simultaneously, a potential regulatory network consisting of 8 lncRNAs and 159 protein-coding genes in the top 10 immune-related biological process terms was constructed. CONCLUSIONS Our findings suggested that the 14-lncRNA signature has satisfactory performance in predicting the prognosis of OSCC, thereby providing new insights to the pathogenesis, clinical patient management and therapeutic intervention. The different immune cell infiltration statuses of OSCC patients may encourage immunotherapy.
Collapse
Affiliation(s)
- Zhihong Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xiaodong Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Lanlan Pan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ruolan Tan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Han Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| |
Collapse
|
12
|
Huang ZD, Liu ZZ, Liu YY, Fu YC, Lin LL, Hu C, Gu HY, Wei RX. Molecular Subtypes Based on Cell Differentiation Trajectories in Head and Neck Squamous Cell Carcinoma: Differential Prognosis and Immunotherapeutic Responses. Front Immunol 2022; 12:791621. [PMID: 35003112 PMCID: PMC8739483 DOI: 10.3389/fimmu.2021.791621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Head and neck squamous cell carcinoma (HNSCC) is one of the most common and lethal malignant tumors. We aimed to investigate the HNSCC cell differentiation trajectories and the corresponding clinical relevance. Methods Based on HNSCC cell differentiation-related genes (HDRGs) identified by single-cell sequencing analysis, the molecular subtypes and corresponding immunity, metabolism, and stemness characteristics of 866 HNSCC cases were comprehensively analyzed. Machine-learning strategies were used to develop a HNSCC cell differentiation score (HCDscore) in order to quantify the unique heterogeneity of individual samples. We also assessed the prognostic value and biological characteristics of HCDscore using the multi-omics data. Results HNSCCs were stratified into three distinct molecular subtypes based on HDRGs: active stroma (Cluster-A), active metabolism (Cluster-B), and active immune (Cluster-C) types. The three molecular subtypes had different characteristics in terms of biological phenotype, genome and epigenetics, prognosis, immunotherapy and chemotherapy responses. We then demonstrated the correlations between HCDscore and the immune microenvironment, subtypes, carcinogenic biological processes, genetic variation, and prognosis. The low-HCDscore group was characterized by activation of immunity, enhanced response to anti-PD-1/PD-L1 immunotherapy, and better survival compared to the high-HCDscore group. Finally, by integrating the HCDscore with prognostic clinicopathological characteristics, a nomogram with strong predictive performance and high accuracy was constructed. Conclusions This study revealed that the cell differentiation trajectories in HNSCC played a nonnegligible role in patient prognosis, biological characteristics, and immune responses. Evaluating cancer cell differentiation will help to develop more effective immunotherapy, metabolic therapy, and chemotherapy strategies.
Collapse
Affiliation(s)
- Zhen-Dong Huang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Stomatology, Southern Medical University, Guangzhou, China
| | - Zi-Zhen Liu
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Yan-Yi Liu
- Department of Stomatology, Southern Medical University, Guangzhou, China
| | - Yong-Cheng Fu
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Lu-Lu Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Chao Hu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui-Yun Gu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Karagiota A, Chachami G, Paraskeva E. Lipid Metabolism in Cancer: The Role of Acylglycerolphosphate Acyltransferases (AGPATs). Cancers (Basel) 2022; 14:cancers14010228. [PMID: 35008394 PMCID: PMC8750616 DOI: 10.3390/cancers14010228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Rapidly proliferating cancer cells reprogram lipid metabolism to keep the balance between fatty acid uptake, synthesis, consumption, and storage as triacylglycerides (TAG). Acylglycerolphosphate acyltransferases (AGPATs)/lysophosphatidic acid acyltransferases (LPAATs) are a family of enzymes that catalyze the synthesis of phosphatidic acid (PA), an intermediate in TAG synthesis, a signaling molecule, and a precursor of phospholipids. Importantly, the expression of AGPATs has been linked to diverse physiological and pathological phenotypes, including cancer. In this review, we present an overview of lipid metabolism reprogramming in cancer cells and give insight into the expression of AGPAT isoforms as well as their association with cancers, parameters of tumor biology, patient classification, and prognosis. Abstract Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
- Correspondence:
| |
Collapse
|