1
|
Motta CM, Carotenuto R, Fogliano C, Rosati L, Denre P, Panzuto R, Romano R, Miccoli G, Simoniello P, Avallone B. Olfactory Impairment and Recovery in Zebrafish ( Danio rerio) Following Cadmium Exposure. BIOLOGY 2025; 14:77. [PMID: 39857307 PMCID: PMC11761868 DOI: 10.3390/biology14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Anthropic activities have significantly elevated cadmium levels, making it a significant stressor in aquatic ecosystems. Present in high concentrations across water bodies, cadmium is known to bioaccumulate and biomagnify throughout the food chain. While the toxic effects of cadmium on the organs and tissues of aquatic species are well-documented, little is known about its impact on sensory systems crucial for survival. Consequently, this study investigated the impact of short-term exposure (96 h) to 25 µM cadmium chloride on the olfactory system of adult zebrafish. The research aimed to assess structural and functional changes in the zebrafish's olfactory lamellae, providing a deeper understanding of how cadmium affects the sense of smell in this aquatic species. After exposure, cyto-anatomical alterations in the lamellae were analysed using light microscopy and immunocytochemistry. They revealed severe lamellar edema, epithelial thickening, and an increased number of apoptotic and crypt cells. Rodlet and goblet cells also increased by 3.5- and 2.5-fold, respectively, compared to control lamellae, and collagen density in the lamina propria increased 1.7-fold. Cadmium upregulated metallothioneins and increased the number of PCNA-positive cells. The olfactory function was assessed through a behavioural odour recognition test, followed by a recovery phase in which zebrafish exposed to cadmium were placed in clean water for six days. The exposed fish performed poorly, failing to reach food in five consecutive trials. However, lamellar damage was reduced after the recovery period, and their performance improved, becoming comparable to the control group. These results suggest that cadmium disrupts the sense of smell, and that recovery is possible after short-term exposure. This evidence sheds light on aspects of animal survival that are often overlooked when assessing environmental pollution.
Collapse
Affiliation(s)
- Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Raffaele Panzuto
- Department of Conservation of Marine Animals and Public Engagement, Zoological Station Anton Dohrn, 80122 Naples, Italy;
| | - Rossana Romano
- Department of Sciences and Technology, University Parthenope, 80133 Naples, Italy; (R.R.); (P.S.)
| | - Gianluca Miccoli
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Palma Simoniello
- Department of Sciences and Technology, University Parthenope, 80133 Naples, Italy; (R.R.); (P.S.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| |
Collapse
|
2
|
Peloggia J, Cheung KY, Whitfield TT, Petkova MD, Schalek R, Boulanger-Weill J, Wu Y, Wang S, van Hateren NJ, Januszewski M, Jain V, Lichtman JW, Engert F, Piotrowski T, Jesuthasan S. Paired and solitary ionocytes in the zebrafish olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.620918. [PMID: 39574570 PMCID: PMC11580993 DOI: 10.1101/2024.11.08.620918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The sense of smell is generated by electrical currents that are influenced by the concentration of ions in olfactory sensory neurons and mucus. In contrast to the extensive morphological and molecular characterization of sensory neurons, there has been little description of the cells that control ion concentrations in the zebrafish olfactory system. Here, we report the molecular and ultrastructural characterization of zebrafish olfactory ionocytes. Transcriptome analysis suggests that the zebrafish olfactory epithelium contains at least three different ionocyte types, which resemble Na + /K + -ATPase-rich (NaR), Na + /Cl - cotransporter (NCC), and H + -ATPase-rich (HR) cells, responsible for calcium, chloride, and pH regulation, respectively, in the zebrafish skin. NaR-like and HR-like ionocytes are usually adjacent to one another, whereas NCC-like cells are usually solitary. The distinct subtypes are differentially distributed: NaR-like/HR-like cell pairs are found broadly within the olfactory epithelium, whereas NCC-like cells reside within the peripheral non-sensory multiciliated cell zone. Comparison of gene expression and serial-section electron microscopy analysis indicates that the NaR-like cells wrap around the HR-like cells and are connected to them by shallow tight junctions. The development of olfactory ionocyte subtypes is also differentially regulated, as pharmacological Notch inhibition leads to a loss of NaR-like and HR-like cells, but does not affect NCC-like ionocyte number. These results provide a molecular and anatomical characterization of olfactory ionocytes in a stenohaline freshwater teleost. The paired ionocytes suggest that both transcellular and paracellular transport regulate ion concentrations in the olfactory epithelium, while the solitary ionocytes may enable independent regulation of multiciliated cells.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - King Yee Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- School of Biosciences, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Tanya T. Whitfield
- School of Biosciences, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Mariela D. Petkova
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Richard Schalek
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Shuohong Wang
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Nicholas J. van Hateren
- School of Biosciences, Bateson Centre and Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Viren Jain
- Google Research, Mountain View, CA 94043, USA
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Department of Molecular Biology, Umeå University, Sweden
| |
Collapse
|
3
|
Al-Zahaby SA, Hassan SS, Elsheikh EH. Ultramicroscopic organization of the exterior olfactory organ in Anguilla vulgaris in relation to its spawning migration. Open Vet J 2024; 14:512-524. [PMID: 38633152 PMCID: PMC11018411 DOI: 10.5455/ovj.2024.v14.i1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Catadromous fishes have well-developed elongated olfactory organs with numerous lamellae and different types of receptor neurons related to their breeding migration. Aim The current study showed how the olfactory system adapted to the catadromous life. Our work declared the need of the migratory fishes for the sense of smell that is exhibited by a higher number of the olfactory lamellae and the receptor neuron verification in the olfactory epithelium. Methods Ten specimens of fully grown, but pre-matured, silver eels of Anguilla vulgaris were captured at the outlet of Edco Lake, overlooking the Mediterranean Sea, east of Alexandria. Olfactory rosettes were dissected and fixed for scanning electron microscope (SEM) and transmission electron microscope (TEM). Results Our study gave a morphological description of the olfactory system of A. vulgaris. At the ultrastructural level using SEM and TEM, one olfactory rosette was provided with 90-100 flat radial olfactory lamellae. The nasal configuration allowed water to enter and exit, transferring odorant molecules to olfactory receptor cells which comprise long cylindrical ciliated and microvillous receptors as well as rod-tipped cells. These cells are bipolar neurons with upward dendritic knobs. The olfactory epithelia also include crypt receptor cells. Interestingly, the olfactory neurons are delimited by nonsensory supporting cells, including long motile kinocilia and sustentacular supporting cells beside mucus secretory goblet cells and ionocytes or labyrinth cells that contribute to the olfaction process. Conclusion Olfaction is crucial in all vertebrates, including fishes as it involves reproduction, parental, feeding, defensive, schooling, and migration behaviors. Here, A. vulgaris is an excellent model for catadromous fishes. It has a well-developed olfactory organ to cope with the dramatic climate change, habitat loss, water pollution, and altered ocean currents effect during their catadromous life for reproduction.
Collapse
Affiliation(s)
| | - Sahar S. Hassan
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Eman H. Elsheikh
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
5
|
Baraban M, Gordillo Pi C, Bonnet I, Gilles JF, Lejeune C, Cabrera M, Tep F, Breau MA. Actomyosin contractility in olfactory placode neurons opens the skin epithelium to form the zebrafish nostril. Dev Cell 2023; 58:361-375.e5. [PMID: 36841243 PMCID: PMC10023511 DOI: 10.1016/j.devcel.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
Despite their barrier function, epithelia can locally lose their integrity to create physiological openings during morphogenesis. The mechanisms driving the formation of these epithelial breaks are only starting to be investigated. Here, we study the formation of the zebrafish nostril (the olfactory orifice), which opens in the skin epithelium to expose the olfactory neurons to external odorant cues. Combining live imaging, drug treatments, laser ablation, and tissue-specific functional perturbations, we characterize a mechanical interplay between olfactory placode neurons and the skin, which plays a crucial role in the formation of the orifice: the neurons pull on the overlying skin cells in an actomyosin-dependent manner which, in combination with a local reorganization of the skin epithelium, triggers the opening of the orifice. This work identifies an original mechanism to break an epithelial sheet, in which an adjacent group of cells mechanically assists the epithelium to induce its local rupture.
Collapse
Affiliation(s)
- Marion Baraban
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France; Laboratoire Jean Perrin, 75005 Paris, France.
| | - Clara Gordillo Pi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | | | - Camille Lejeune
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Florian Tep
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, 75005 Paris, France; Laboratoire Jean Perrin, 75005 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.
| |
Collapse
|
6
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
7
|
Rajan SG, Saxena A. Scents from the past: Lineage history and terminal identity in the olfactory system. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220037. [PMID: 36519073 PMCID: PMC9746709 DOI: 10.1002/ntls.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Sriivatsan G. Rajan
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
8
|
Triana-Garcia PA, Nevitt GA, Pesavento JB, Teh SJ. Gross morphology, histology, and ultrastructure of the olfactory rosette of a critically endangered indicator species, the Delta Smelt, Hypomesus transpacificus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:597-616. [PMID: 34156533 PMCID: PMC8408092 DOI: 10.1007/s00359-021-01500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
The Delta Smelt (Hypomesus transpacificus) is a small, semi-anadromous fish native to the San Francisco Bay-Delta Estuary and has been declared as critically endangered. Their olfactory biology, in particular, is poorly understood and a basic description of their sensory anatomy is needed to advance our understanding of the sensory ecology of species to inform conservation efforts to manage and protect them. We provide a description of the gross morphology, histological, immunohistochemical, and ultrastructural features of the olfactory rosette in this fish and discuss some of the functional implications in relation to olfactory ability. We show that Delta Smelt have a multilamellar olfactory rosette with allometric growth. Calretinin immunohistochemistry revealed a diffuse distribution of olfactory receptor neurons within the epithelium. Ciliated, microvillous and crypt neurons were clearly identified using morphological and immunohistochemical features. The olfactory neurons were supported by robust ciliated and secretory sustentacular cells. Although the sense of smell has been overlooked in Delta Smelt, we conclude that the olfactory epithelium has many characteristics of macrosmatic fish. With this study, we provide a foundation for future research into the sensory ecology of this imperiled fish.
Collapse
Affiliation(s)
- Pedro Alejandro Triana-Garcia
- Integrative Pathobiology Graduate Group and Aquatic Health Program, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, VM3B, 3203, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA. .,Grupo de Investigación en Sanidad de Organismos Acuáticos, Instituto de Acuicultura de Los Llanos, Universidad de Los Llanos, Villavicencio, Meta, Colombia.
| | - Gabrielle A Nevitt
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Joseph B Pesavento
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Swee J Teh
- Integrative Pathobiology Graduate Group and Aquatic Health Program, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, VM3B, 3203, 1089 Veterinary Medicine Dr, Davis, CA, 95616, USA
| |
Collapse
|