1
|
Solár P, Šerý O, Vojtíšek T, Krajsa J, Srník M, Dziedzinská R, Králík P, Kessler M, Dubový P, Joukal A, Balcar VJ, Joukal M. The Blood-Cerebrospinal Fluid Barrier as a Potential Entry Site for the SARS-CoV-2 Virus. J Med Virol 2025; 97:e70184. [PMID: 39835622 DOI: 10.1002/jmv.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain. Tissue samples from 24 deceased COVID-19-positive individuals were analyzed. Reverse transcription real-time PCR (RT-qPCR) was performed on selected brain regions, including the choroid plexus, to detect SARS-CoV-2 viral RNA. Additionally, immunofluorescence staining and confocal microscopy were used to detect and localize two characteristic proteins of SARS-CoV-2: the spike protein S1 and the nucleocapsid protein. RT-qPCR analysis confirmed the presence of SARS-CoV-2 viral RNA in the choroid plexus. Immunohistochemical staining revealed viral particles localized in the epithelial cells of the choroid plexus, with the spike protein S1 detected in the late endosomes. Our findings suggest that the blood-cerebrospinal fluid (B-CSF) barrier in the choroid plexus serves as a route of entry for SARS-CoV-2 into the CNS. This study contributes to the understanding of the mechanisms underlying CNS involvement in COVID-19 and highlights the importance of further research to explore potential therapeutic strategies targeting this entry pathway.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Omar Šerý
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Vojtíšek
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Krajsa
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Srník
- Department of Forensic Medicine, St. Anne's Faculty Hospital, Brno, Czech Republic
- Department of Forensic Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radka Dziedzinská
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Králík
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Markéta Kessler
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir J Balcar
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Neuroscience Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW, Sydney, New South Wales, Australia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Sideratou CM, Papaneophytou C. Persisting Shadows: Unraveling the Impact of Long COVID-19 on Respiratory, Cardiovascular, and Nervous Systems. Infect Dis Rep 2023; 15:806-830. [PMID: 38131885 PMCID: PMC10742861 DOI: 10.3390/idr15060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), instigated by the zoonotic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly transformed from an outbreak in Wuhan, China, into a widespread global pandemic. A significant post-infection condition, known as 'long- COVID-19' (or simply 'long- COVID'), emerges in a substantial subset of patients, manifesting with a constellation of over 200 reported symptoms that span multiple organ systems. This condition, also known as 'post-acute sequelae of SARS-CoV-2 infection' (PASC), presents a perplexing clinical picture with far-reaching implications, often persisting long after the acute phase. While initial research focused on the immediate pulmonary impact of the virus, the recognition of COVID-19 as a multiorgan disruptor has unveiled a gamut of protracted and severe health issues. This review summarizes the primary effects of long COVID on the respiratory, cardiovascular, and nervous systems. It also delves into the mechanisms underlying these impacts and underscores the critical need for a comprehensive understanding of long COVID's pathogenesis.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus;
| |
Collapse
|
3
|
Vitiello A, Sabbatucci M, Silenzi A, Capuano A, Rossi F, Zovi A, Blasi F, Rezza G. The impact of SARS-CoV-2 infection in patients with cystic fibrosis undergoing CFTR channel modulators treatment: a literature review. Respir Res 2023; 24:278. [PMID: 37957647 PMCID: PMC10644493 DOI: 10.1186/s12931-023-02593-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Several risk factors for Coronavirus-2019 (COVID-19) disease have been highlighted in clinical evidence. Among the various risk factors are advanced age, metabolic illness such as diabetes, heart disease, and diseases of the respiratory system. Cystic Fibrosis (CF) is a rare disease with autosomal recessive transmission, characterised by a lack of synthesis of the CFTR channel protein, and multi-organ clinical symptoms mainly affecting the respiratory tract with recurrent pulmonary exacerbations. In view of the pathophysiological mechanisms, CF disease should be in theory considered a risk factor for SARS-CoV2 or severe COVID-19. However, recent clinical evidence seems to point in the opposite direction, suggesting that CF could be a protective factor against severe COVID-19. Possibly, the lack of presence or function of the CFTR channel protein could be linked to the expression of the membrane glycoprotein ACE-2, a key enzyme for the endocellular penetration of SARS-CoV-2 and related to the pathophysiology of COVID-19 disease. Furthermore, CFTR channel modulating agents could indirectly influence the expression of ACE-2, playing an important role in restoring the proper functioning of mucociliary clearance and the pulmonary microbiome in the host response to SARS-CoV-2 infection. In this review, the authors attempt to shed light on these important associations of issues that are not yet fully elucidated.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
| | - Michela Sabbatucci
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
- Department Infectious Diseases, National Institute of Health, Rome, Italy
| | - Andrea Silenzi
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
| | - Annalisa Capuano
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Zovi
- Directorate General for Hygiene, Food Safety and Nutrition, Ministry of Health, Rome, Italy.
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giovanni Rezza
- Directorate General for Health Prevention, Ministry of Health, Rome, Italy
| |
Collapse
|
4
|
Sabbatucci M, Vitiello A, Clemente S, Zovi A, Boccellino M, Ferrara F, Cimmino C, Langella R, Ponzo A, Stefanelli P, Rezza G. Omicron variant evolution on vaccines and monoclonal antibodies. Inflammopharmacology 2023:10.1007/s10787-023-01253-6. [PMID: 37204696 DOI: 10.1007/s10787-023-01253-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV)-2 responsible for the global COVID-19 pandemic has caused almost 760 million confirmed cases and 7 million deaths worldwide, as of end-February 2023. Since the beginning of the first COVID-19 case, several virus variants have emerged: Alpha (B1.1.7), Beta (B135.1), Gamma (P.1), Delta (B.1.617.2) and then Omicron (B.1.1.529) and its sublineages. All variants have diversified in transmissibility, virulence, and pathogenicity. All the newly emerging SARS-CoV-2 variants appear to contain some similar mutations associated with greater "evasiveness" of the virus to immune defences. From early 2022 onward, several Omicron subvariants named BA.1, BA.2, BA.3, BA.4, and BA.5, with comparable mutation forms, have followed. After the wave of contagions caused by Omicron BA.5, a new Indian variant named Centaurus BA.2.75 and its new subvariant BA.2.75.2, a second-generation evolution of the Omicron variant BA.2, have recently been identified. From early evidence, it appears that this new variant has higher affinity for the cell entry receptor ACE-2, making it potentially able to spread very fast. According to the latest studies, the BA.2.75.2 variant may be able to evade more antibodies in the bloodstream generated by vaccination or previous infection, and it may be more resistant to antiviral and monoclonal antibody drug treatments. In this manuscript, the authors highlight and describe the latest evidences and critical issues have emerged on the new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Michela Sabbatucci
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Salvatore Clemente
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Andrea Zovi
- Ministry of Health, Directorate General of Hygiene, Food Safety and Nutrition, Viale Giorgio Ribotta 5, 00144, Rome, Italy.
| | | | - Francesco Ferrara
- Pharmaceutical Department, Local Health Unit Napoli 3 Sud, Dell'amicizia Street 22, 80035, Nola, Italy
| | - Carla Cimmino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Langella
- Department of Pharmaceutics, Agency for Health Protection of the Metropolitan Area of Milan, Milan, Italy
| | | | - Paola Stefanelli
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Rezza
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| |
Collapse
|