1
|
Castillo-Aguilar M, Mabe-Castro D, Medina D, Núñez-Espinosa C. Enhancing cardiovascular monitoring: a non-linear model for characterizing RR interval fluctuations in exercise and recovery. Sci Rep 2025; 15:8628. [PMID: 40074820 PMCID: PMC11904009 DOI: 10.1038/s41598-025-93654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
This work aimed to develop and validate a novel non-linear model to characterize RR interval (RRi) time-dependent fluctuations throughout a rest-exercise-recovery protocol, offering a more precise and physiologically relevant representation of cardiac autonomic responses than traditional HRV metrics or linear approaches. Using data from a cohort of 272 elderly participants, the model employs logistic functions to capture the non-stationary and transient nature of RRi time-dependent fluctuations, with parameter estimation achieved via Hamiltonian Monte Carlo. Sobol sensitivity analysis identified baseline RRi (α) and recovery proportion (c) as the primary drivers of variability, underscoring their critical roles in autonomic regulation and resilience. Validation against real-world RRi data demonstrated robust model performance (R2 = 0.868, CI95%[0.834, 0.895] and Root Mean Square Error [RMSE] = 32.6 ms, CI95%[30.01, 35.77]), accurately reflecting autonomic recovery and exercise-induced fluctuations. By advancing real-time cardiovascular assessments, this framework holds significant potential for clinical applications in rehabilitation and cardiovascular monitoring in athletic contexts to optimize performance and recovery. These findings highlight the model's ability to provide precise, physiologically relevant assessments of autonomic function, paving the way for its use in personalized health monitoring and performance optimization across diverse populations.
Collapse
Affiliation(s)
- Matías Castillo-Aguilar
- Centro Asistencial Docente e Investigación (CADI-UMAG), Universidad de Magallanes, Punta Arenas, Chile
| | - Diego Mabe-Castro
- Centro Asistencial Docente e Investigación (CADI-UMAG), Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Kinesiología, Universidad de Magallanes, Punta Arenas, Chile
| | - David Medina
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago, Chile
| | - Cristian Núñez-Espinosa
- Centro Asistencial Docente e Investigación (CADI-UMAG), Universidad de Magallanes, Punta Arenas, Chile.
- Escuela de Medicina, Universidad de Magallanes, Avenida Bulnes 01855, Box 113-D, Punta Arenas, Chile.
| |
Collapse
|
2
|
Hung CH, Lu WA, Pagaduan JC, Kuo CD, Chen YS. Agreement of ultra-short-term heart rate variability measure after different repeated bouts of sprint ability tests. Sci Prog 2024; 107:368504241262150. [PMID: 39096045 PMCID: PMC11298065 DOI: 10.1177/00368504241262150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This study aims to explore: (1) the validity of post-exercise ultra-short-term heart rate variability (HRVust) after two different bouts of repeated sprint ability test (RSA), and (2) the relationship between HRVust measure and RSA performance. Twenty adolescent male futsal players voluntarily participated in this study (age: 17.65 ± 1.81 years, body height: 170.88 ± 4.98 cm, body weight: 61.78 ± 4.67 kg). The participants performed a standard RSA test (RSAstandard) and an RSA test with a 10% decrement of the best sprint time test (RSA10%decrement) on two separate occasions within a week. On both occasions, a 5-min resting electrocardiography was administered pre- and post-RSA exercise protocols. The first 30-s (HRVust30s), 60-s (HRVust60s), and 60-120-s (HRVust1-2min) were extracted and used to compare with the standard of 5-min HRV recording (HRVcriterion). The natural logarithm (ln) of the standard deviation of normal-to-normal intervals (SDNN) and root mean square of successive normal-to-normal interval differences (RMSSD) HRV indices were utilised to establish intraclass correlation coefficient (ICC2,1), coefficient of variation (%CV), and Pearson product-moment correlation (r). Results revealed the ICC values of HRVust lnSDNN (RSAstandard = 0.77-0.88; RSA10%decrement = 0.41-0.71) and lnRMSSD (RSAstandard = 0.81-0.86; RSA10%decrement = 0.57-0.82). Furthermore, significantly positive correlations between best sprint time and post-exercise HRVust indices were found in lnSDNN (r = 0.47-0.62; p < 0.05) and lnRMSSD (r = 0.45; p < 0.05). Additionally, a large CV of lnSDNN (RSAstandard = 32%-45%; RSA10%decrement = 29%-39%), lnRMSSD (RSAstandard = 50%-66%; RSA10%decrement = 48%-52%), and ratio (RSAstandard = 45%-126%; RSA10%decrement = 27%-45%) was found after the RSA protocols. In conclusion, the number of bouts of RSA exercise potentially influences the agreement of post-exercise time-domain HRVust indices to standard HRV measure.
Collapse
Affiliation(s)
- Chin-Hwai Hung
- Department of Physical Education, Fu Jen Catholic University, New Taipei City
| | - Wan-An Lu
- College of LOHAS Industry, Fo-Guang University, Yilan
- Tanyu Research Laboratory, Taipei
| | - Jeffrey Cayaban Pagaduan
- Tanyu Research Laboratory, Taipei
- Faculty of Physical Culture, Institute of Active Lifestyle, Palacký University, Olomouc, Czechia
| | - Cheng-Deng Kuo
- Tanyu Research Laboratory, Taipei
- Department of Internal Medicine, Taipei Veterans General Hospital Hsinchu Branch, Hsinchu County
- Department of Internal Medicine, Hsiao Chung-Cheng Healthcare Group, New Taipei City
| | - Yung-Sheng Chen
- Tanyu Research Laboratory, Taipei
- Department of Exercise and Health Sciences, University of Taipei, Taipei
- Exercise and Health Promotion Association, New Taipei City
- High Performance Unit, Chinese Taipei Football Association, New Taipei City
| |
Collapse
|
3
|
Gąsior JS, Gąsienica-Józkowy M, Młyńczak M, Rosoł M, Makuch R, Baranowski R, Werner B. Heart rate dynamics and asymmetry during sympathetic activity stimulation and post-stimulation recovery in ski mountaineers-a pilot exploratory study. Front Sports Act Living 2024; 6:1336034. [PMID: 38495673 PMCID: PMC10941344 DOI: 10.3389/fspor.2024.1336034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
There is a lack of studies on non-linear heart rate (HR) variability in athletes. We aimed to assess the usefulness of short-term HR dynamics and asymmetry parameters to evaluate the neural modulation of cardiac activity based on non-stationary RR interval series by studying their changes during sympathetic nervous system activity stimulation (isometric handgrip test) and post-stimulation recovery in professional ski mountaineers. The correlation between the changes in the parameters and the respiratory rate (RespRate) and also the duration of the career was analyzed. Short-term (5 min) and ultra-short-term (1 min) rates of patterns with no variations (0V), number of acceleration runs of length 1 (AR1), and short-term Porta's Index were greater, whereas Guzik's Index (GI) was smaller during sympathetic stimulation compared to rest. GI increased and the number of AR1 decreased during recovery. Greater increases in GI and RMSSD were associated with greater decreases in RespRate during recovery. Greater increases in RespRate from rest to short-term sympathetic stimulation were associated with greater increases in 0V (Max-min method) and AR1 but also with greater decreases in decelerations of short-term variance and accelerations and decelerations of long-term variance. Greater increases in 0V (Max-min method) and number of AR1 during sympathetic stimulation were associated with a shorter career duration. Greater decreases in these parameters during recovery were associated with a longer career duration. Changes in measures of HR dynamics and asymmetry, calculated based on short-term non-stationary RRi time series induced by sympathetic stimulation and post-stimulation recovery, reflected sympathovagal shift and were associated with condition-related alterations in RespRate and career duration in athletes who practice ski mountaineering.
Collapse
Affiliation(s)
- Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | | | - Marcel Młyńczak
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Maciej Rosoł
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Robert Makuch
- Department of Physical Education, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland
| | - Rafał Baranowski
- Department of Heart Rhythm Disorders, National Institute of Cardiology, Warsaw, Poland
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Hou J, Lu K, Chen P, Wang P, Li J, Yang J, Liu Q, Xue Q, Tang Z, Pei H. Comprehensive viewpoints on heart rate variability at high altitude. Clin Exp Hypertens 2023; 45:2238923. [PMID: 37552638 DOI: 10.1080/10641963.2023.2238923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Hypoxia is a physiological state characterized by reduced oxygen levels in organs and tissues. It is a common clinicopathological process and a major cause of health problems in highland areas. Heart rate variability (HRV) is a measure of the balance in autonomic innervation to the heart. It provides valuable information on the regulation of the cardiovascular system by neurohumoral factors, and changes in HRV reflect the complex interactions between multiple systems. In this review, we provide a comprehensive overview of the relationship between high-altitude hypoxia and HRV. We summarize the different mechanisms of diseases caused by hypoxia and explore the changes in HRV across various systems. Additionally, we discuss relevant pharmaceutical interventions. Overall, this review aims to provide research ideas and assistance for in-depth studies on HRV. By understanding the intricate relationship between high-altitude hypoxia and HRV, we can gain insights into the underlying mechanisms and potential therapeutic approaches to mitigate the effects of hypoxia on cardiovascular and other systems. METHODS The relevant literature was collected systematically from scientific database, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Baidu Scholar, as well as other literature sources, such as classic books of hypoxia. RESULTS There is a close relationship between heart rate variability and high-altitude hypoxia. Heart rate variability is an indicator that evaluates the impact of hypoxia on the cardiovascular system and other related systems. By improving the observation of HRV, we can estimate the progress of cardiovascular diseases and predict the impact on other systems related to cardiovascular health. At the same time, changes in heart rate variability can be used to observe the efficacy of preventive drugs for altitude related diseases. CONCLUSIONS HRV can be used to assess autonomic nervous function under various systemic conditions, and can be used to predict and monitor diseases caused by hypoxia at high altitude. Investigating the correlation between high altitude hypoxia and heart rate variability can help make HRV more rapid, accurate, and effective for the diagnosis of plateau-related diseases.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Keji Lu
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peiwen Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Qing Liu
- Department of Medical Engineering, The 950th Hospital of PLA, Yecheng, Xinjiang, China
| | - Qiang Xue
- Department of Cardiology Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
5
|
Orini M, van Duijvenboden S, Young WJ, Ramírez J, Jones AR, Hughes AD, Tinker A, Munroe PB, Lambiase PD. Long-term association of ultra-short heart rate variability with cardiovascular events. Sci Rep 2023; 13:18966. [PMID: 37923787 PMCID: PMC10624663 DOI: 10.1038/s41598-023-45988-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Heart rate variability (HRV) is a cardiac autonomic marker with predictive value in cardiac patients. Ultra-short HRV (usHRV) can be measured at scale using standard and wearable ECGs, but its association with cardiovascular events in the general population is undetermined. We aimed to validate usHRV measured using ≤ 15-s ECGs (using RMSSD, SDSD and PHF indices) and investigate its association with atrial fibrillation, major adverse cardiac events, stroke and mortality in individuals without cardiovascular disease. In the National Survey for Health and Development (n = 1337 participants), agreement between 15-s and 6-min HRV, assessed with correlation analysis and Bland-Altman plots, was very good for RMSSD and SDSD and good for PHF. In the UK Biobank (n = 51,628 participants, 64% male, median age 58), after a median follow-up of 11.5 (11.4-11.7) years, incidence of outcomes ranged between 1.7% and 4.3%. Non-linear Cox regression analysis showed that reduced usHRV from 15-, 10- and 5-s ECGs was associated with all outcomes. Individuals with low usHRV (< 20th percentile) had hazard ratios for outcomes between 1.16 and 1.29, p < 0.05, with respect to the reference group. In conclusion, usHRV from ≤ 15-s ECGs correlates with standard short-term HRV and predicts increased risk of cardiovascular events in a large population-representative cohort.
Collapse
Affiliation(s)
- Michele Orini
- Institute of Cardiovascular Science, University College London, 1-19 Torrington Pl, London, WC1E 7HB, UK.
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK.
| | - Stefan van Duijvenboden
- Institute of Cardiovascular Science, University College London, 1-19 Torrington Pl, London, WC1E 7HB, UK
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - William J Young
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julia Ramírez
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanotecnología, Zaragoza, Spain
| | - Aled R Jones
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, 1-19 Torrington Pl, London, WC1E 7HB, UK
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Andrew Tinker
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 1-19 Torrington Pl, London, WC1E 7HB, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| |
Collapse
|
6
|
Maqsood R, Khattab A, Bennett AN, Boos CJ. Reliability of carotid-femoral arterial waveforms for the derivation of ultra-short term heart rate variability in injured British servicemen: An inter-rater reliability study. PLoS One 2023; 18:e0290618. [PMID: 37656708 PMCID: PMC10473479 DOI: 10.1371/journal.pone.0290618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023] Open
Abstract
In this study, the comparative precision of carotid versus femoral arterial waveforms to measure ultra-short term heart rate variability (HRVUST) following traumatic injury was investigated for the first time. This was an inter-rater reliability study of 50 British servicemen (aged 23-44 years) with non-acute combat-related traumatic injury (CRTI). Paired continuous arterial waveform data for HRVUST analysis, were simultaneously sampled at the carotid and femoral arterial sites (14-16 seconds) during pulse wave velocity (PWV) measurement. HRVUST was reported as the root mean square of the successive differences (RMSSD). Following the determination of the superior sampling site (carotid versus femoral), the blinded inter-rater agreement in RMSSD for the preferred site was quantified using the Intra-class Correlation Coefficient (ICC) and the Bland-Altman plot. The mean age of participants was 34.06±4.88 years. The femoral site was superior to the carotid site with a significantly higher number of reliable signals obtained (Fisher's Exact test; p<0.001). The inter-rater agreement in femoral-derived RMSSD was excellent [ICC 0.99 (95%CI: 0.994-0.997)] with a moderate level of agreement (mean difference [bias]: 0.55; 95% CI: -0.13-1.24 ms). In this study, we demonstrated that the femoral artery is a more reliable site than the carotid artery for HRVUST measurement and post-trauma risk stratification following CRTI.
Collapse
Affiliation(s)
- Rabeea Maqsood
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ahmed Khattab
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| | - Alexander N. Bennett
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom
| | - Christopher J. Boos
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
- Department of Cardiology, University Hospital Dorset, NHS Trust, Poole, United Kingdom
| |
Collapse
|
7
|
Krause E, Vollmer M, Wittfeld K, Weihs A, Frenzel S, Dörr M, Kaderali L, Felix SB, Stubbe B, Ewert R, Völzke H, Grabe HJ. Evaluating heart rate variability with 10 second multichannel electrocardiograms in a large population-based sample. Front Cardiovasc Med 2023; 10:1144191. [PMID: 37252117 PMCID: PMC10213655 DOI: 10.3389/fcvm.2023.1144191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Heart rate variability (HRV), defined as the variability of consecutive heart beats, is an important biomarker for dysregulations of the autonomic nervous system (ANS) and is associated with the development, course, and outcome of a variety of mental and physical health problems. While guidelines recommend using 5 min electrocardiograms (ECG), recent studies showed that 10 s might be sufficient for deriving vagal-mediated HRV. However, the validity and applicability of this approach for risk prediction in epidemiological studies is currently unclear to be used. Methods This study evaluates vagal-mediated HRV with ultra-short HRV (usHRV) based on 10 s multichannel ECG recordings of N = 4,245 and N = 2,392 participants of the Study of Health in Pomerania (SHIP) from two waves of the SHIP-TREND cohort, additionally divided into a healthy and health-impaired subgroup. Association of usHRV with HRV derived from long-term ECG recordings (polysomnography: 5 min before falling asleep [N = 1,041]; orthostatic testing: 5 min of rest before probing an orthostatic reaction [N = 1,676]) and their validity with respect to demographic variables and depressive symptoms were investigated. Results High correlations (r = .52-.75) were revealed between usHRV and HRV. While controlling for covariates, usHRV was the strongest predictor for HRV. Furthermore, the associations of usHRV and HRV with age, sex, obesity, and depressive symptoms were similar. Conclusion This study provides evidence that usHRV derived from 10 s ECG might function as a proxy of vagal-mediated HRV with similar characteristics. This allows the investigation of ANS dysregulation with ECGs that are routinely performed in epidemiological studies to identify protective and risk factors for various mental and physical health problems.
Collapse
Affiliation(s)
- Elischa Krause
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, Greifswald, Germany
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Stephan B. Felix
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Mamontov OV, Grozov RV, Minasian SM, Zhuravskii SG, Galagudza MM, Kamshilin AA. Effect of Physical Training on the Morphology of Parasympathetic Atrial Ganglia after Unilateral Vagotomy in Rats. J Cardiovasc Dev Dis 2022; 9:391. [PMID: 36421926 PMCID: PMC9697623 DOI: 10.3390/jcdd9110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 01/12/2025] Open
Abstract
Cardiac denervation is a serious problem in a number of patients, including patients after heart transplantation. The status of the parasympathetic ganglia after crossing the preganglionic fibers of the vagus nerve has not been enough studied. The aim of our study was to assess the effect of physical training on the morphological parameters of the parasympathetic atrial ganglia and autonomic regulation of heart rate after right- and left-sided vagotomy in rats. Morphometric characteristics of the right atrial ganglia were evaluated using an immunohistochemical method after a study that included a three-time assessment of heart rate variability. It was found that right-sided vagotomy leads to both an increase in the volume of ganglion and autonomic dysfunction. No significant change in the number of nerve cells was found in animals with false and left-sided vagotomy while maintaining preganglionic innervation after the physical training, whereas exercises led to a decrease in the volume of nerve tissue of rats with right-sided denervation. It was also found that in animals with preserved vagal innervation, the volume of atrial ganglion tissue correlates with overall heart rate variability and a normalized parasympathetic component. Therefore, a positive effect from regular physical activity on parasympathetic regulation can be expected only if preganglionic vagal influence is preserved.
Collapse
Affiliation(s)
- Oleg V. Mamontov
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Roman V. Grozov
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Sarkis M. Minasian
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | | | | | - Alexei A. Kamshilin
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
9
|
Gąsior JS, Rosoł M, Młyńczak M, Flatt AA, Hoffmann B, Baranowski R, Werner B. Reliability of Symbolic Analysis of Heart Rate Variability and Its Changes During Sympathetic Stimulation in Elite Modern Pentathlon Athletes: A Pilot Study. Front Physiol 2022; 13:829887. [PMID: 35295583 PMCID: PMC8918944 DOI: 10.3389/fphys.2022.829887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Most studies on heart rate variability (HRV) in professional athletes concerned linear, time-, and frequency-domain indices, and there is lack of studies on non-linear parameters in this group. The study aimed to determine the inter-day reliability, and group-related and individual changes of short-term symbolic dynamics (SymDyn) measures during sympathetic nervous system activity (SNSa) stimulation among elite modern pentathletes. Methods Short-term electrocardiographic recordings were performed in stable measurement conditions with a 7-day interval between tests. SNSa stimulation via isometric handgrip strength test was conducted on the second day of study. The occurrence rate of patterns without variations (0V), with one variation (1V), two like (2LV), and two unlike variations (2UV) obtained using three approaches (the Max–min, the σ, and the Equal-probability methods) were analyzed. Relative and absolute reliability were evaluated. Results All SymDyn indices obtained using the Max–min method, 0V, and 2UV obtained using the σ method, 2UV obtained using the Equal-probability method presented acceptable inter-day reliability (the intraclass correlation coefficient between .91 and .99, Cohen’s d between −.08 and .10, the within-subject coefficient of variation between 4% and 22%). 2LV, 2UV, and 0V obtained using the Max–min and σ methods significantly decreased and increased, respectively, during SNSa stimulation—such changes were noted for all athletes. There was no significant association between differences in SymDyn parameters and respiratory rate in stable conditions and while comparing stable conditions and SNSa stimulation. Conclusion SymDyn indices may be used as reliable non-respiratory-associated parameters in laboratory settings to detect autonomic nervous system (ANS) activity modulations in elite endurance athletes. These findings provide a potential solution for addressing the confounding influence of respiration frequency on HRV-derived inferences of cardiac autonomic function. For this reason, SymDyn may prove to be preferable for field-based monitoring where measurements are unsupervised.
Collapse
Affiliation(s)
- Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Jakub S. Gąsior,
| | - Maciej Rosoł
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marcel Młyńczak
- Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Andrew A. Flatt
- Biodynamics and Human Performance Center, Department of Health Sciences and Kinesiology, Georgia Southern University (Armstrong Campus), Savannah, GA, United States
| | - Bartosz Hoffmann
- Physiotherapy Division, Faculty of Medical Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Baranowski
- Department of Heart Rhythm Disorders, National Institute of Cardiology, Warsaw, Poland
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Gelman R, Berg M, Ilan Y. A Subject-Tailored Variability-Based Platform for Overcoming the Plateau Effect in Sports Training: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1722. [PMID: 35162745 PMCID: PMC8834821 DOI: 10.3390/ijerph19031722] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
Abstract
The plateau effect in training is a significant obstacle for professional athletes and average subjects. It evolves from both the muscle-nerve-axis-associated performance and various cardiorespiratory parameters. Compensatory adaptation mechanisms contribute to a lack of continuous improvement with most exercise regimens. Attempts to overcome this plateau in exercise have been only partially successful, and it remains a significant unmet need in both healthy subjects and those suffering from chronic neuromuscular, cardiopulmonary, and metabolic diseases. Variability patterns characterize many biological processes, from cellular to organ levels. The present review discusses the significant obstacles in overcoming the plateau in training and establishes a platform to implement subject-tailored variability patterns to prevent and overcome this plateau in muscle and cardiorespiratory performance.
Collapse
Affiliation(s)
- Ram Gelman
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem 9103401, Israel;
| | - Marc Berg
- Department of Pediatrics, Lucile Packard Children’s Hospital, Stanford University, Palo Alto, CA 94304, USA;
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem 9103401, Israel;
| |
Collapse
|
11
|
Mamontov OV, Karpov AA, Minasian SM, Fedoseeva DA, Kalinichenko AN, Kamshilin AA. Physical Training Reverses the Impaired Cardiac Autonomic Control and Exercise Tolerance Induced by Right-Side Vagal Denervation. IEEE ACCESS 2022; 10:10393-10401. [DOI: 10.1109/access.2022.3144611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Oleg V. Mamontov
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Andrei A. Karpov
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Sarkis M. Minasian
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Daria A. Fedoseeva
- Department of Bioengineering Systems, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
| | - Alexander N. Kalinichenko
- Department of Bioengineering Systems, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
| | - Alexei A. Kamshilin
- Institute of Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|