1
|
Rocha-Braga LC, Pimentel Neto J, Gomes I, Ciena AP. Myotendinous junction: a microenvironment favorable for short-term adaptations to resistance training following gastrocnemius muscle atrophy. Front Physiol 2025; 16:1493820. [PMID: 40438252 PMCID: PMC12116370 DOI: 10.3389/fphys.2025.1493820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
The myotendinous junction (MTJ) is an interface region between the skeletal muscle fibers and the tendon, specialized in force transmission, and has a wide capacity to adapt to different stimuli. Disuse muscle atrophy is a deleterious effect of joint immobilization, which is used as a conservative treatment for bone, muscle, and joint injuries and promotes a significant functional decline. Physical exercise is an effective therapeutic modality in combating muscle atrophy, especially resistance training that promotes hypertrophic responses. We aimed to investigate the plasticity of the MTJ in rats subjected to joint immobilization, followed by resistance training in a short period (7 and 14 days). Forty-eight male Wistar rats (90 days old) were used and divided into groups (n = 8): Control (C), Immobilized (I), Trained (T), and Immobilized Trained (IT). The MTJ samples of gastrocnemius muscle were collected and processed for morphoquantitative analyses using transmission electron microscopy (MTJ and sarcomeres morphometry) and immunofluorescence techniques for collagen XXII, satellite cells and telocytes. We observed that the I group exhibited a reduction in muscle mass, which was associated with a decrease in the length of sarcoplasmic invaginations and evaginations, as well as reductions in belly and proximal sarcomere length. Conversely, the IT groups demonstrated a progressive increase in muscle mass, with significant improvements from 7 days (p < 0.01) to 14 days (p < 0.0001). The most pronounced adaptations in sarcoplasmic projections were observed in the IT14 group, which exhibited: a significant increase in the length of sarcoplasmic invaginations (p < 0.05); a marked increase in sarcoplasmic evaginations (p < 0.001); a substantial enlargement of the belly sarcomere (p < 0.0001) and proximal sarcomere (p < 0.0001); and a notable expansion of the collagen XXII perimeter (p < 0.001). We concluded that the joint immobilization resulted in muscle atrophy due to disuse, which led to a decrease in sarcoplasmic projections in the MTJ, a reduction in the perimeter of collagen XXII, and, consequently, fragility of the region. Short-term training demonstrated positive effects on functional improvement, partial recovery of muscle mass, and induction of hypertrophic responses, indicating positive repercussions for the structural recovery of the myotendinous region.
Collapse
Affiliation(s)
- Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
Amundsen R, Thorarinsdottir S, Larmo A, Pedersen R, Andersen TE, Møller M, Bahr R. #ReadyToplay: hamstring injuries in women's football - a two-season prospective cohort study in the Norwegian women's premier league. SCI MED FOOTBALL 2025; 9:95-103. [PMID: 38243669 DOI: 10.1080/24733938.2024.2305389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
In this two-season prospective cohort study (2020-2021), we aimed to describe the characteristics, clinical findings and magnetic resonance imaging (MRI) findings of hamstring injuries in the Norwegian women's premier league. Hamstring injuries were examined by team physiotherapists using a standardised clinical examination and injury form. Injury location and severity (modified Peetrons classification) were graded based on MRI by two independent radiologists. Fifty-three hamstring injuries were clinically examined, 31 of these with MRI. Hamstring injuries caused 8 days (median) lost from football (interquartile range: 3-15 days, range: 0-188 days), most were non-contact and occurred during sprinting. Gradual-onset (53%) and sudden-onset injuries (47%) were evenly distributed. The injuries examined with MRI were classified as grade 0 (52%), grade 1 (16%) or grade 2 (29%). One proximal tendinopathy case was not graded. Grade 2 injuries caused more time loss than grade 0 (19 ± 8 vs. 7 ± 7 days, p = 0.002). Of injuries with MRI changes, 60% were in the m. biceps femoris, mainly the muscle-tendon junction, and 40% in the m. semimembranosus, most in the proximal tendon. Compared to previous findings from men's football, a higher proportion of hamstring injuries in women's football had a gradual onset and involved the m. semimembranosus, particularly its proximal tendon.
Collapse
Affiliation(s)
- R Amundsen
- Oslo Sports Trauma Research Center, Institute of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - S Thorarinsdottir
- Oslo Sports Trauma Research Center, Institute of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - A Larmo
- Radiology Department, Evidia Norge AS, Oslo, Norway
| | - R Pedersen
- Radiology Department, Unilabs Norge AS, Oslo, Norway
| | - T E Andersen
- Oslo Sports Trauma Research Center, Institute of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
- The Norwegian Football Association Medical Centre (Idrettens helsesenter), The Norwegian Football Association, Oslo, Norway
| | - M Møller
- Oslo Sports Trauma Research Center, Institute of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - R Bahr
- Oslo Sports Trauma Research Center, Institute of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
3
|
Quintana-Cepedal M, Vicente-Rodríguez G, Crespo I, Olmedillas H. Is hip adductor or abductor strength in healthy athletes associated with future groin pain? A systematic review and meta-analysis. Br J Sports Med 2025; 59:501-509. [PMID: 39532315 DOI: 10.1136/bjsports-2024-108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To systematically review the association between hip adduction and abduction strength, and adduction-to-abduction strength ratio in healthy athletes with the occurrence of future groin pain and time-loss groin injuries. DESIGN Systematic review with meta-analysis. DATA SOURCES PubMed, Web of Science, SPORTDiscus, PEDro, Embase, and Scopus. ELIGIBILITY CRITERIA Studies included had to (1) measure hip adductor or abductor strength in healthy athletes, (2) conduct a follow-up period to assess the occurrence of groin pain, (3) present strength data separately for participants who remained uninjured and those who suffered an injury and (4) use a prospective design. Risk of bias was assessed according to the Quality in Prognosis Studies tool. The certainty in the evidence appraised was measured using the Grading of Recommendations Assessment Development and Evaluation approach. RESULTS Thirteen prospective cohort studies met the inclusion criteria. Overall study risk of bias was rated as low. Players who remained uninjured had stronger adduction strength compared with players who subsequently suffered groin pain (standardised mean differences with 95% CIs (SMD=-0.5, 95% CI -0.92 to -0.09)) and time-loss groin pain (SMD=-0.68, 95% CI -1.31 to -0.06). Trivial effects were observed for abduction strength (groin pain SMD=0.03, 95% CI -0.11 to 0.17; time-loss SMD=-0.07, 95% CI -0.25 to 0.11) and adduction-to-abduction strength ratio (groin pain SMD=-0.02, 95% CI -0.55 to 0.51; time-loss SMD=-0.11, 95% CI -1.11 to 0.89). Age and diagnostic criteria were not significant moderators of the relationship between adductor strength and groin pain (p=0.72 and p=0.12). CONCLUSION There is a moderate effect of hip adductor strength on the occurrence of groin pain, while there is no relationship between either abductor strength or the ratio of adductor-to-abductor strength with the occurrence of groin pain. PROSPERO REGISTRATION NUMBER CRD42024548630.
Collapse
Affiliation(s)
- Marcos Quintana-Cepedal
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Asturian Research Group in Performance, Readaptation, Training and Health (AstuRES), University of Oviedo, Oviedo, Spain
| | - Germán Vicente-Rodríguez
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
- EXER-GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Irene Crespo
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias, Oviedo, Spain
| | - Hugo Olmedillas
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Asturian Research Group in Performance, Readaptation, Training and Health (AstuRES), University of Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Hoegsbjerg C, Møbjerg A, Yeung CYC, Schjerling P, Krogsgaard MR, Koch M, Kjaer M, von Keudell AG, Mackey AL. Fibre type differences in the organisation of mononuclear cells and myonuclei at the tips of human myofibres. J Cell Sci 2025; 138:JCS263660. [PMID: 39704232 DOI: 10.1242/jcs.263660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The myotendinous junction (MTJ) is a weak link in the musculoskeletal system. Here, we isolated the tips of single myofibres from healthy (non-injured) human hamstring muscles for confocal microscopy (n=6) and undertook RNAscope in situ hybridisation (n=6) to gain insight into the profiles of cells and myonuclei in this region, in a fibre type manner. A marked presence of mononuclear cells was observed coating the myofibre tips (confirmed by serial block face scanning electron microscopy and cryosection immunofluorescence), with higher numbers for type I (median 29; range 16-63) than type II (16; 9-23) myofibres (P<0.05). The number of these cells expressing COL22A1 was comparable between fibre types. Myonuclear number and density gradually increased from the myofibre proper towards the tip for both fibre types (P<0.05). COL22A1 was expressed by similar proportions of myonuclei in type I (median 26%; range 13-56) and type II (19%; 3-67) myofibre tips. 70% of the COL22A1-positive nuclei in the MTJ region were myonuclei, and the remaining 30% were MTJ cells. This insight refines our fundamental understanding of the human MTJ at the cell and structural levels.
Collapse
Affiliation(s)
- Christian Hoegsbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ask Møbjerg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ching-Yan Chloé Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arvind G von Keudell
- Orthopaedic Trauma Section, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Brigham and Women's Hospital, Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Alhaskawi A, Dong Y, Zou X, Zhou W, Ezzi SHA, Goutham Kota V, Hasan Abdulla Hasan Abdulla M, Abdalbary S, Lu H. Advancements in biomaterials and scaffold design for tendon repair and regeneration. J Appl Biomater Funct Mater 2025; 23:22808000241310684. [PMID: 40420476 DOI: 10.1177/22808000241310684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Tendon injuries present a significant clinical challenge due to their limited natural healing capacity and the mechanical demands placed on these tissues. This review provides a comprehensive evaluation of the current strategies and advancements in tendon repair and regeneration, focusing on biomaterial innovations and scaffold design. Through a systematic literature search of databases such as PubMed, Scopus, and Web of Science, key studies were analyzed to assess the efficacy of biocompatible materials like hydrogels, synthetic polymers, and fiber-reinforced scaffolds in promoting tendon healing. Emphasis is placed on the role of collagen fiber architecture, including fiber diameter, alignment, and crimping, in restoring the mechanical strength and functional properties of tendons. Additionally, the review highlights emerging techniques such as electrospinning, melt electrowriting, and hybrid textile methods that allow for precise scaffold designs mimicking native tendon structures. Cutting-edge approaches in regenerative medicine, including stem cell therapies, bioelectronic devices, and bioactive molecules, are also explored for their potential to enhance tendon repair. The findings underscore the transformative impact of these technologies on improving tendon biomechanics and functional recovery. Future research directions are outlined, aiming to overcome the current limitations in scaffold mechanical properties and integration at tendon-bone and tendon-muscle junctions. This review contributes to the development of more effective strategies for tendon regeneration, advancing both clinical outcomes and the field of orthopedic tissue engineering.
Collapse
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaodi Zou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
- Department of Orthopedics, Zhejiang Chinese Medical University, The Second Affiliated School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Weijie Zhou
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, Zhejiang Province, P. R. China
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, P. R. China
| | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | | | - Sahar Abdalbary
- Faculty of Physical Therapy, Department of Orthopedic Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Hulm S, Timmins RG, Hickey JT, Maniar N, Lin YC, Knaus KR, Heiderscheit BC, Blemker SS, Opar DA. The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury. SPORTS MEDICINE - OPEN 2024; 10:133. [PMID: 39718717 DOI: 10.1186/s40798-024-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/24/2024] [Indexed: 12/25/2024]
Abstract
The aponeurosis is a large fibrous connective tissue structure within and surrounding skeletal muscle and is a critical component of the muscle-tendon unit (MTU). Due to the lack of consensus on terminology and the heterogeneous nature of the aponeurosis between MTUs, there are several questions that remain unanswered. For example, the aponeurosis is often conflated with the free tendon rather than being considered an independent structure. This has subsequent implications when interpreting data regarding the structure, function, and adaptation of the aponeuroses from these studies. In recent years, a body of work has emerged to suggest that acute injury to the myo-aponeurotic complex may have an impact on return-to-sport timeframes and reinjury rates. Therefore, the purpose of this review is to provide a more detailed understanding of the morphology and mechanical behaviour common to all aponeuroses, as well as the unique characteristics of specific lower-limb aponeuroses that are commonly injured. This review provides the practitioner with a current understanding of the mechanical, material, and adaptive properties of lower limb aponeuroses and suggests directions for future research related to the myo-aponeurotic complex.
Collapse
Affiliation(s)
- Scott Hulm
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Jack T Hickey
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Department of Sport Science and Nutrition, Maynooth University, County Kildare, Ireland
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Yi-Chung Lin
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Katherine R Knaus
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Bryan C Heiderscheit
- Badger Athletic Performance Program, Department of Orthopedics and Rehabilitation, University of WI‑Madison, Madison, WI, USA
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
7
|
Kiratitanaporn W, Guan J, Tang M, Xiang Y, Lu TY, Balayan A, Lao A, Berry DB, Chen S. 3D Printing of a Biomimetic Myotendinous Junction Assisted by Artificial Intelligence. Biomater Sci 2024; 12:6047-6062. [PMID: 39446075 DOI: 10.1039/d4bm00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating this interface in vitro. Engineering this junction in vitro is challenging due to substantial fabrication difficulties in creating scaffolds with intricate microarchitecture and stiffness heterogeneity to mimic the native muscle-tendon interface. To address the current challenges in creating the MTJ in vitro, digital light processing (DLP)-based 3D printing was used to fabricate poly(glycerol sebacate)acrylate (PGSA)-based muscle-tendon scaffolds with physiologically informed microstructure and mechanical properties. Local mechanical properties in various regions of the scaffold were tuned by adjusting the exposure time and light intensity used during the continuous DLP-based 3D printing process to match the mechanical properties present in distinct regions of native muscle-tendon tissue using printing parameters defined by an artificial intelligence-trained algorithm. To evaluate how the presence of zonal stiffness regions can affect the phenotype of a 3D-printed MTJ in vitro model, three 3D-printed PGSA-based scaffold conditions were investigated: (1) a scaffold with muscle-informed mechanical properties in its entirety without zonal stiffness regions, (2) a scaffold with one end possessing native muscle stiffness and the other end possessing native tendon stiffness, and (3) a scaffold with three distinct regions whose stiffness values correspond to those of muscle on one end of the scaffold, MTJ in the middle junction of the scaffold, and tendon on the other end of the scaffold. The scaffold containing regional mechanical heterogeneity most similar to the native MTJ (condition 3) was found to enhance the expression of MTJ-related markers compared to those without the presence of zonal stiffness regions. Overall, the DLP-based 3D printing platform and biomaterial system developed in this study could serve as a useful tool for mimicking the complexity of the native MTJ, which possesses inherent geometric and mechanical heterogeneity.
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ting-Yu Lu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Alis Balayan
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David B Berry
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Su W, Yang Q, Li T, Xu J, Yin P, Han M, Lin Z, Deng Y, Wu Y, Huang W, Wang L. Electrospun Aligned Nanofiber Yarns Constructed Biomimetic M-Type Interface Integrated into Precise Co-Culture System as Muscle-Tendon Junction-on-a-Chip for Drug Development. SMALL METHODS 2024; 8:e2301754. [PMID: 38593371 DOI: 10.1002/smtd.202301754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The incorporation of engineered muscle-tendon junction (MTJ) with organ-on-a-chip technology provides promising in vitro models for the understanding of cell-cell interaction at the interface between muscle and tendon tissues. However, developing engineered MTJ tissue with biomimetic anatomical interface structure remains challenging, and the precise co-culture of engineered interface tissue is further regarded as a remarkable obstacle. Herein, an interwoven waving approach is presented to develop engineered MTJ tissue with a biomimetic "M-type" interface structure, and further integrated into a precise co-culture microfluidic device for functional MTJ-on-a-chip fabrication. These multiscale MTJ scaffolds based on electrospun nanofiber yarns enabled 3D cellular alignment and differentiation, and the "M-type" structure led to cellular organization and interaction at the interface zone. Crucially, a compartmentalized co-culture system is integrated into an MTJ-on-a-chip device for the precise co-culture of muscle and tendon zones using their medium at the same time. Such an MTJ-on-a-chip device is further served for drug-associated MTJ toxic or protective efficacy investigations. These results highlight that these interwoven nanofibrous scaffolds with biomimetic "M-type" interface are beneficial for engineered MTJ tissue development, and MTJ-on-a-chip with precise co-culture system indicated their promising potential as in vitro musculoskeletal models for drug development and biological mechanism studies.
Collapse
Affiliation(s)
- Weiwei Su
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiao Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Panjing Yin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mingying Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuosheng Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuping Deng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Ling Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
9
|
Pimentel Neto J, Batista RD, Rocha-Braga LC, Chacur M, Camargo PO, Ciena AP. The telocytes relationship with satellite cells: Extracellular vesicles mediate the myotendinous junction remodeling. Microsc Res Tech 2024; 87:1733-1741. [PMID: 38501548 DOI: 10.1002/jemt.24549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
The peripheral nerve injury (PNI) affects the morphology of the whole locomotor apparatus, which can reach the myotendinous junction (MTJ) interface. In the injury condition, the skeletal muscle satellite cells (SC) are triggered, activated, and proliferated to repair their structure, and in the MTJ, the telocytes (TC) are associated to support the interface with the need for remodeling; in that way, these cells can be associated with SC. The study aimed to describe the SC and TC relationship after PNI at the MTJ. Sixteen adult Wistar rats were divided into Control Group (C, n = 8) and PNI Group (PNI, n = 8), PNI was performed by the constriction of the sciatic nerve. The samples were processed for transmission electron microscopy and immunostaining analysis. In the C group was evidenced the arrangement of sarcoplasmic evaginations and invaginations, the support collagen layer with a TC inside it, and an SC through vesicles internally and externally to then. In the PNI group were observed the disarrangement of invaginations and evaginations and sarcomeres degradation at MTJ, as the disposition of telopodes adjacent and in contact to the SC with extracellular vesicles and exosomes in a characterized paracrine activity. These findings can determine a link between the TCs and the SCs at the MTJ remodeling. RESEARCH HIGHLIGHTS: Peripheral nerve injury promotes the myotendinous junction (MTJ) remodeling. The telocytes (TC) and the satellite cells (SC) are present at the myotendinous interface. TC mediated the SC activity at MTJ.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Rodrigo Daniel Batista
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Lara Caetano Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Marucia Chacur
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Oliveira Camargo
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
10
|
Kim MH, Martin W, Quarmby A, Stoll J, Engel T, Cassel M. Effects of sensorimotor training on functional and pain outcomes in achilles tendinopathy: a systematic review. Front Sports Act Living 2024; 6:1414633. [PMID: 39119510 PMCID: PMC11306088 DOI: 10.3389/fspor.2024.1414633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Considering the neuromuscular alterations in Achilles tendinopathy (AT), sensorimotor training (SMT) might be beneficial to restore the neuromuscular capacity of the muscle-tendon complex and thereby improve patients' functions and alleviate symptoms. However, there is still a lack of knowledge concerning the effects of SMT on improving functional (e.g., strength) and pain outcomes in this population. Thus, the purpose of this study was to synthesize current evidence to analyze the efficacy of SMT in people with AT. Methods A systematic electronic search was performed in PubMed, Web of Science, and Cochrane Central Register of Controlled Trials from inception to December 2023. Studies applying SMT in people with AT investigating functional or clinical pain outcomes were considered. Protocols had to incorporate balance, stabilization, proprioception, or vibration training. Patients with insertional or mid-portion AT (≥18 years age) diagnosed with clinical or sonographic evaluation were included. Results The search yielded 823 records. A total of three randomized controlled trials were considered eligible for the analysis. Each trial used a different SMT protocol: balance training, balance with stabilization training, or whole-body vibration training (WBVT) with other co-interventions. Most functional and pain parameters improved compared to baseline. The first study reported a decrease in pain and an increase in performance (i.e., countermovement jump height) and endurance (i.e., number of heel-raises) by 12-week use of a balance training in addition to isometric, concentric/eccentric, and eccentric exercises. The second study evaluated the four weeks effect of SMT (balance and stabilization training plus eccentric exercises) in addition to passive physiotherapy (deep frictions, ice, ultrasound), resulting in an increased plantarflexion peak torque and reduced pain levels. The third study investigating WBVT reported at 12 weeks an increase in flexibility and a decrease in tendon pain. Discussion SMT in addition to other co-interventions (i.e., eccentric, isometric, concentric/eccentric training, physiotherapy) showed improvements in strength, performance, muscle flexibility, and alleviated clinical outcomes of pain. SMT might therefore be useful as part of a multimodal treatment strategy protocol in patients suffering from AT. However, due to the small number of studies included and the diversity of SMT protocols, the current evidence is weak; its additional effectiveness should be evaluated. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=467698, Identifier CRD42023467698.
Collapse
Affiliation(s)
- Myoung-Hwee Kim
- University Outpatient Clinic, Sports Medicine & Sports Orthopaedics, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Zein MI, Mokkenstorm MJK, Cardinale M, Holtzhausen L, Whiteley R, Moen MH, Reurink G, Tol JL. Baseline clinical and MRI risk factors for hamstring reinjury showing the value of performing baseline MRI and delaying return to play: a multicentre, prospective cohort of 330 acute hamstring injuries. Br J Sports Med 2024; 58:766-776. [PMID: 38729628 PMCID: PMC11228232 DOI: 10.1136/bjsports-2023-107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES Studies identifying clinical and MRI reinjury risk factors are limited by relatively small sample sizes. This study aimed to examine the association between baseline clinical and MRI findings with the incidence of hamstring reinjuries using a large multicentre dataset. METHODS We merged data from four prospective studies (three randomised controlled trials and one ongoing prospective case series) from Qatar and the Netherlands. Inclusion criteria included patients with MRI-confirmed acute hamstring injuries (<7 days). We performed multivariable modified Poisson regression analysis to assess the association of baseline clinical and MRI data with hamstring reinjury incidence within 2 months and 12 months of follow-up. RESULTS 330 and 308 patients were included in 2 months (31 (9%) reinjuries) and 12 months (52 (17%) reinjuries) analyses, respectively. In the 2-month analysis, the presence of discomfort during the active knee extension test was associated with reinjury risk (adjusted risk ratio (ARR) 3.38; 95% CI 1.19 to 9.64). In the 12 months analysis, the time to return to play (RTP) (ARR 0.99; 95% CI 0.97 to 1.00), straight leg raise angle on the injured leg (ARR 0.98; 95% CI 0.96 to 1.00), the presence of discomfort during active knee extension test (ARR 2.52; 95% CI 1.10 to 5.78), the extent of oedema anteroposterior on MRI (ARR 0.74; 95% CI 0.57 to 0.96) and myotendinous junction (MTJ) involvement on MRI (ARR 3.10; 95% CI 1.39 to 6.93) were independently associated with hamstring reinjury. CONCLUSIONS Two clinical findings (the presence of discomfort during active knee extension test, lower straight leg raise angle on the injured leg), two MRI findings (less anteroposterior oedema, MTJ involvement) and shorter time to RTP were independently associated with increased hamstring reinjury risk. These findings may assist the clinician to identify patients at increased reinjury risk following acute hamstring injury. TRIAL REGISTRATION NUMBERS NCT01812564; NCT02104258; NL2643; NL55671.018.16.
Collapse
Affiliation(s)
- Muhammad Ikhwan Zein
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Faculty of Sports Science, Universitas Negeri Yogyakarta, Yogyakarta, Special Region of Yogyakarta, Indonesia
| | - Milo J K Mokkenstorm
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Sports, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Marco Cardinale
- Sports Science, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Ad Dawhah, Qatar
| | - Louis Holtzhausen
- Sports Medicine Department, Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Rod Whiteley
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Ad Dawhah, Qatar
| | - Maarten H Moen
- Department of Sports Medicine, Bergman Clinics BV, Naarden, The Netherlands
| | - Guus Reurink
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Sports, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Johannes L Tol
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Ad Dawhah, Qatar
- Amsterdam Movement Sciences (AMS), Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
13
|
Josvai M, Polyak E, Kalluri M, Robertson S, Crone WC, Suzuki M. An engineered in vitro model of the human myotendinous junction. Acta Biomater 2024; 180:279-294. [PMID: 38604466 PMCID: PMC11088524 DOI: 10.1016/j.actbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.
Collapse
Affiliation(s)
- Mitchell Josvai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Erzsebet Polyak
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Meghana Kalluri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Wendy C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA; Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA.
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Shan X, Otsuka S, Okubo T, Takeuchi T, Fukushige K, Naito M. Assessing site-specificity of the biomechanical properties of hamstring aponeuroses using MyotonPRO: A cadaveric study. Clin Biomech (Bristol, Avon) 2024; 114:106230. [PMID: 38493724 DOI: 10.1016/j.clinbiomech.2024.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Hamstring muscles are the most frequently reported sites of muscle strain injuries, especially near the bi-articular muscles' myotendinous junction, where aponeurosis provides a connective tissue network linking muscle fibers to the tendon. This study aimed to investigate the reliability and site-specific differences of hamstring aponeuroses under different conditions (formalin and urea) using MyotonPRO. METHODS Eight hamstring muscle groups were dissected from four human cadavers (two males and two females) aged 83-93 years. Measurements of the mechanical properties of the aponeuroses from the superficial and deep regions of biceps femoris long head, semitendinosus, and semimembranosus (after formalin solution immersion) were done using MyotonPRO (intra-rater reliability was examined within a 24-h interval), following which the hamstring aponeuroses were measured using a similar procedure after urea solution immersion. FINDINGS Test-retest (intra-rater) results revealed that the MyotonPRO measurement of tone, stiffness, relaxation, and creep of cadaveric aponeuroses presented good to excellent reliability (ICC: 0.86 to 0.98). There were no significant differences in tone, stiffness, elasticity, relaxation, and creep among the six sites of hamstring aponeuroses under both formalin and urea conditions. Significant differences between formalin and urea conditions were found in the tone, stiffness, relaxation, and creep of hamstring aponeuroses (P < 0.05). INTERPRETATION These results suggested that the biomechanical properties of hamstring aponeuroses showed homogeneity between the sites using MyotonPRO. Urea solution could potentially neutralize the effect of formalin on the biomechanical properties of cadaveric muscle-aponeurosis-tendon units. The present findings might influence the design of subsequent cadaveric studies on hamstring muscle strains.
Collapse
Affiliation(s)
- Xiyao Shan
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Shun Otsuka
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohito Okubo
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takao Takeuchi
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Fukushige
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
15
|
RODRIGUEZ LUISA, LIU YIDA, SOEDIRDJO SUBARYANIDH, THAKUR BHASKAR, DHAHER YASINY. Oral Contraception Use and Musculotendinous Injury in Young Female Patients: A Database Study. Med Sci Sports Exerc 2024; 56:511-519. [PMID: 37890119 PMCID: PMC10922414 DOI: 10.1249/mss.0000000000003334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
PURPOSE The purpose of this study is to characterize the effect of sex and the influence of oral contraception usage on musculotendinous injury (MTI). Current literature suggests a disparity in the incidence of MTI between males and females. This may be attributed to inherent biological differences between the sexes, such as in the sex hormonal milieu. There is a lack of information associating sex hormone milieu and MTI. METHODS We searched the PearlDiver database (a for-fee healthcare database) for males, females taking oral contraceptives (OC), and eumenorrheic females not taking any form of hormonal contraceptives (non-OC) 18-39 yr old. The three populations were matched by age and body mass index. We queried the database for lower-extremity skeletal MTI diagnoses in these groups. RESULTS Each group contained 42,267 patients with orthopedic injuries. There were a total of 1476 (3.49%) skeletal MTI in the male group, 1078 (2.55%) in non-OC females, and 231 (0.55%) in OC females. Both the non-OC and the OC groups had a significantly smaller proportion of MTI than males ( P < 0.0001), and therefore these groups were less likely (adjusted odds ratios, 0.72 and 0.15, respectively) to experience MTI when controlled for potential covariates. CONCLUSIONS In this study, we show that females are less likely to develop MTI to total injuries, when compared with males, with OC using females being least likely followed by non-OC females. These results are consistent with other epidemiological studies; however, overall results in the literature are variable. This study adds to the emerging body of literature on sex hormone-influenced musculoskeletal injury but, more specifically, MTI, which have not been rigorously investigated.
Collapse
Affiliation(s)
- LUIS A. RODRIGUEZ
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX
| | - YIDA LIU
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX
| | | | - BHASKAR THAKUR
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX
| | - YASIN Y. DHAHER
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Parrino RL, Adams W, Letter MI, Ripic Z, Baraga MG, Kaplan LD, Harrah T, Tremblay J, Luxenburg D, Conti J, Best TM, Signorile JF. Impact of Quadriceps Tendon Graft Thickness on Electromechanical Delay and Neuromuscular Performance After ACL Reconstruction. Orthop J Sports Med 2023; 11:23259671231201832. [PMID: 37846315 PMCID: PMC10576934 DOI: 10.1177/23259671231201832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 10/18/2023] Open
Abstract
Background Both partial- and full-thickness quadriceps tendon (QT) graft harvests are used for anterior cruciate ligament reconstruction (ACLR). Purpose To evaluate the impact of QT graft harvest depth (full or partial thickness) on electromechanical delay (EMD), peak torque (PT), and rate of torque development (RTD) after ACLR. Study Design Controlled laboratory study. Methods A total of 26 patients who underwent either partial-thickness (n = 14) or full-thickness (n = 12) autograft QT ACLR were recruited between June and November 2021 (>1 year before participation). Patients performed isokinetic knee extension testing with surface electromyography of the quadriceps muscles. Mixed repeated-measures analysis of variance with least significant difference post hoc testing was used to determine significant differences (mean difference [MD] ± SE) or interactions for all variables. Results A significant speed×depth interaction was seen for the vastus medialis (P = .005). Pairwise analyses showed significantly longer EMD for the partial-thickness graft than the full-thickness graft (MD ± SE, 19.92 ± 6.33 ms; P = .006). In the partial-thickness graft, the EMD was significantly longer at 90 deg/s versus 180 deg/s (MD ± SE, 19.11 ± 3.95 ms; P < .001) and 300 deg/s (MD ± SE, 16.43 ± 5.30 ms; P = .006). For PT, the full-thickness graft had a significantly lower PT on the operated versus nonoperated side at all speeds (MD ± SE: 90 deg/s, -57.0 ± 10.5 N·m, P < .001; 180 deg/s, -26.0 ± 10.2 N·m, P = .020; 300 deg/s, -20.3 ± 8.9 N·m, P = .034). For RTD, the full-thickness graft showed significantly Slower RTD for the operated versus nonoperated side at all time points (MD ± SD: RTD0-25 (0-25% of the range of motion), -131.3 ± 50.9 N·m/s, P = .018; RTD25-50, -197.0 ± 72.5 N·m/s, P = .014; RTD50-75, -113.3 ± 39.8 N·m/s, P = .013; RTD75-100, -149.4 ± 35.9 N·m/s, P < .001). Conclusion Compared with partial-thickness QT, full-thickness QT showed a shorter vastus medialis EMD at higher loading, and therefore greater stiffness, as well as slower RTD and lower PT across all testing speeds. Clinical Relevance The impact of full-thickness QT autograft on EMD and neuromuscular performance should be considered for ACLR.
Collapse
Affiliation(s)
| | - Will Adams
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Michael I. Letter
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
- University of Miami Health System Sports Medicine Institute, Coral Gables, Florida, USA
| | - Zachary Ripic
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Michael G. Baraga
- University of Miami Health System Sports Medicine Institute, Coral Gables, Florida, USA
| | - Lee D. Kaplan
- University of Miami Health System Sports Medicine Institute, Coral Gables, Florida, USA
| | - Tanner Harrah
- Valley Orthopedic Associates, San Dimas, California, USA
| | - Julien Tremblay
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Dylan Luxenburg
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joseph Conti
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Thomas M. Best
- University of Miami Health System Sports Medicine Institute, Coral Gables, Florida, USA
| | | |
Collapse
|
17
|
Meller L, Oca MC, Wilson K, Allen M, Smitaman E, Kalavacherla S, Vitale K. Intramuscular Degloving Injury of the Rectus Femoris From Kickball: A Case Report and Review. Cureus 2023; 15:e42230. [PMID: 37605671 PMCID: PMC10440009 DOI: 10.7759/cureus.42230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/23/2023] Open
Abstract
Intramuscular degloving injuries (IDIs) are a rare and unique type of muscle injury where there is a dissociation between the inner and outer components of a particular muscle. This type of injury is seen exclusively within the rectus femoris (RF) muscle due to its unique muscle-within-a-muscle anatomy and represents 9% of RF injuries. Despite the significance of this injury, limited knowledge exists regarding the mechanism, management, and prognosis of IDIs, and IDIs are not currently included among the various muscle injury classifications. We present a 38-year-old active male with a one-week history of acute onset right anterior mid-thigh pain and palpable lump after playing kickball. Right thigh MRI revealed an IDI of the RF muscle, edema within the inner and outer muscular portions of the muscle, and a retraction of the torn inner indirect myotendinous complex of the RF. He was managed with physical therapy while being advised to avoid aggressive quadriceps contractions, high-intensity, or high-impact exercise. This is the first reported case of an IDI that occurred in an older recreational athlete (versus young competitive athletes), and the first case of an IDI in a kicking sport other than soccer (kickball). This case emphasizes the importance of a broader awareness of this injury, and a heightened index of suspicion is advised in assessing potential IDIs to improve patient prognosis and rehabilitation. Given the limited understanding and rarity of this injury, we also provide a comprehensive review describing the IDI to the RF.
Collapse
Affiliation(s)
- Leo Meller
- Department of Orthopedic Surgery, Division of Sports Medicine, University of California San Diego School of Medicine, La Jolla, USA
| | - Michael C Oca
- Department of Orthopedic Surgery, Division of Sports Medicine, University of California San Diego School of Medicine, La Jolla, USA
| | - Katherine Wilson
- Department of Orthopedic Surgery, Division of Sports Medicine, University of California San Diego School of Medicine, La Jolla, USA
| | - Matthew Allen
- Department of Orthopedic Surgery, Division of Sports Medicine, University of California San Diego School of Medicine, La Jolla, USA
| | - Edward Smitaman
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, USA
| | - Sandhya Kalavacherla
- Department of Orthopedic Surgery, Division of Sports Medicine, University of California San Diego School of Medicine, La Jolla, USA
| | - Kenneth Vitale
- Department of Orthopedic Surgery, Division of Sports Medicine, University of California San Diego School of Medicine, La Jolla, USA
| |
Collapse
|
18
|
Govindaraju DT, Chen CH, Shalumon KT, Kao HH, Chen JP. Bioactive Nanostructured Scaffold-Based Approach for Tendon and Ligament Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1847. [PMID: 37368277 PMCID: PMC10302175 DOI: 10.3390/nano13121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
An effective therapeutic strategy to treat tendon or ligament injury continues to be a clinical challenge due to the limited natural healing capacity of these tissues. Furthermore, the repaired tendons or ligaments usually possess inferior mechanical properties and impaired functions. Tissue engineering can restore the physiological functions of tissues using biomaterials, cells, and suitable biochemical signals. It has produced encouraging clinical outcomes, forming tendon or ligament-like tissues with similar compositional, structural, and functional attributes to the native tissues. This paper starts by reviewing tendon/ligament structure and healing mechanisms, followed by describing the bioactive nanostructured scaffolds used in tendon and ligament tissue engineering, with emphasis on electrospun fibrous scaffolds. The natural and synthetic polymers for scaffold preparation, as well as the biological and physical cues offered by incorporating growth factors in the scaffolds or by dynamic cyclic stretching of the scaffolds, are also covered. It is expected to present a comprehensive clinical, biological, and biomaterial insight into advanced tissue engineering-based therapeutics for tendon and ligament repair.
Collapse
Affiliation(s)
- Darshan Tagadur Govindaraju
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan;
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan;
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
| | - K. T. Shalumon
- Department of Chemistry, Sacred Heart College, Mahatma Gandhi University, Kochi 682013, India;
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan;
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan;
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
19
|
Ashir A, Jerban S, Barrère V, Wu Y, Shah SB, Andre MP, Chang EY. Skeletal Muscle Assessment Using Quantitative Ultrasound: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4763. [PMID: 37430678 PMCID: PMC10222479 DOI: 10.3390/s23104763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Ultrasound (US) is an important imaging tool for skeletal muscle analysis. The advantages of US include point-of-care access, real-time imaging, cost-effectiveness, and absence of ionizing radiation. However, US can be highly dependent on the operator and/or US system, and a portion of the potentially useful information carried by raw sonographic data is discarded in image formation for routine qualitative US. Quantitative ultrasound (QUS) methods provide analysis of the raw or post-processed data, revealing additional information about normal tissue structure and disease status. There are four QUS categories that can be used on muscle and are important to review. First, quantitative data derived from B-mode images can help determine the macrostructural anatomy and microstructural morphology of muscle tissues. Second, US elastography can provide information about muscle elasticity or stiffness through strain elastography or shear wave elastography (SWE). Strain elastography measures the induced tissue strain caused either by internal or external compression by tracking tissue displacement with detectable speckle in B-mode images of the examined tissue. SWE measures the speed of induced shear waves traveling through the tissue to estimate the tissue elasticity. These shear waves may be produced using external mechanical vibrations or internal "push pulse" ultrasound stimuli. Third, raw radiofrequency signal analyses provide estimates of fundamental tissue parameters, such as the speed of sound, attenuation coefficient, and backscatter coefficient, which correspond to information about muscle tissue microstructure and composition. Lastly, envelope statistical analyses apply various probability distributions to estimate the number density of scatterers and quantify coherent to incoherent signals, thus providing information about microstructural properties of muscle tissue. This review will examine these QUS techniques, published results on QUS evaluation of skeletal muscles, and the strengths and limitations of QUS in skeletal muscle analysis.
Collapse
Affiliation(s)
- Aria Ashir
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Radiology, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Victor Barrère
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Yuanshan Wu
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Sameer B. Shah
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Michael P. Andre
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| |
Collapse
|
20
|
Amemiya H, Yamamoto M, Higa K, Watanabe G, Taniguchi S, Kitamura K, Jeong J, Yanagisawa N, Fukuda KI, Abe S. Effects of Myostatin on Nuclear Morphology at the Myotendinous Junction. Int J Mol Sci 2023; 24:ijms24076634. [PMID: 37047606 PMCID: PMC10094852 DOI: 10.3390/ijms24076634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Myostatin (Myo) is known to suppress skeletal muscle growth, and was recently reported to control tendon homeostasis. The purpose of the present study was to investigate the regulatory involvement of Myo in the myotendinous junction (MTJ) in vivo and in vitro. After Achilles tendon injury in mice, we identified unexpected cell accumulation on the tendon side of the MTJ. At postoperative day 7 (POD7), the nuclei had an egg-like profile, whereas at POD28 they were spindle-shaped. The aspect ratio of nuclei on the tendon side of the MTJ differed significantly between POD7 and POD28 (p = 4.67 × 10−34). We then investigated Myo expression in the injured Achilles tendon. At the MTJ, Myo expression was significantly increased at POD28 relative to POD7 (p = 0.0309). To investigate the action of Myo in vitro, we then prepared laminated sheets of myoblasts (C2C12) and fibroblasts (NIH3T3) (a pseudo MTJ model). Myo did not affect the expression of Pax7 and desmin (markers of muscle development), scleraxis and temonodulin (markers of tendon development), or Sox9 (a common marker of muscle and tendon development) in the cell sheets. However, Myo changed the nuclear morphology of scleraxis-positive cells arrayed at the boundary between the myoblast sheet and the fibroblast sheet (aspect ratio of the cell nuclei, myostatin(+) vs. myostatin(-): p = 0.000134). Myo may strengthen the connection at the MTJ in the initial stages of growth and wound healing.
Collapse
Affiliation(s)
- Hikari Amemiya
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazunari Higa
- Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shuichiro Taniguchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E. 24th Street, New York, NY 10010, USA
| | - Nobuaki Yanagisawa
- Division of Oral Health Sciences, Department of Health Sciences, School of Health and Social Services, Saitama Prefectural University, 820 Sannomia, Koshigaya-shi, Saitama 343-0036, Japan
| | - Ken-ichi Fukuda
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
21
|
Córdova A, Drobnic F, Noriega-González D, Caballero-García A, Roche E, Alvarez-Mon M. Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023; 15:384. [PMID: 36678255 PMCID: PMC9860696 DOI: 10.3390/nu15020384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Physical activity in general and sports in particular, is a mechanism that produces stress and generates great force in the tendon and in the muscle-tendon unit, which increases the risk of injury (tendinopathies). Eccentric and repetitive contraction of the muscle precipitates persistent microtraumatism in the tendon unit. In the development of tendinopathies, the cellular process includes inflammation, apoptosis, vascular, and neuronal changes. Currently, treatments with oral supplements are frequently used. Curcumin seems to preserve, and even repair, damaged tendons. In this systematic review, we focus more especially on the benefits of curcumin. The biological actions of curcumin are diverse, but act around three systems: (a) inflammatory, (b) nuclear factor B (NF-κB) related apoptosis pathways, and (c) oxidative stress systems. A bibliographic search is conducted under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a basis for reporting reliable systematic reviews to perform a Scoping review. After analysing the manuscripts, we can conclude that curcumin is a product that demonstrates a significant biological antialgic, anti-inflammatory, and antioxidant power. Therefore, supplementation has a positive effect on the inflammatory and regenerative response in tendinopathies. In addition, curcumin decreases and modulates the cell infiltration, activation, and maturation of leukocytes, as well as the production of pro-inflammatory mediators at the site of inflammation.
Collapse
Affiliation(s)
- Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| | - Franchek Drobnic
- Medical Department, Wolverhampton Wanderers FC, Wolverhampton WV1 4QR, UK
| | - David Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain
| | - Enrique Roche
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialty, Faculty of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital “Príncipe de Asturias”, 28871 Alcalá de Henares, Spain
| |
Collapse
|
22
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2022; 158:1-4. [PMID: 35751678 DOI: 10.1007/s00418-022-02125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, CH-8091, Zurich, Switzerland
| |
Collapse
|
23
|
Jacob CDS, Barbosa GK, Rodrigues MP, Pimentel Neto J, Rocha-Braga LC, de Oliveira CG, Chacur M, Ciena AP. Ultrastructural and Molecular Development of the Myotendinous Junction Triggered by Stretching Prior to Resistance Exercise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-6. [PMID: 35258447 DOI: 10.1017/s1431927622000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.
Collapse
Affiliation(s)
- Carolina Dos S Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Gabriela K Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Camilla G de Oliveira
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| |
Collapse
|
24
|
Jakobsen JR, Schjerling P, Svensson RB, Buhl R, Carstensen H, Koch M, Krogsgaard MR, Kjær M, Mackey AL. RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans. Am J Physiol Cell Physiol 2021; 321:C453-C470. [PMID: 34260300 DOI: 10.1152/ajpcell.00218.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The myotendinous junction (MTJ) is a specialized interface for transmitting high forces between the muscle and tendon and yet the MTJ is a common site of strain injury with a high recurrence rate. The aim of this study was to identify previously unknown MTJ components in mature animals and humans. Samples were obtained from the superficial digital flexor (SDF) muscle-tendon interface of 20 horses, and the tissue was separated through a sequential cryosectioning approach into muscle, MTJ (muscle tissue enriched in myofiber tips attached to the tendon), and tendon fractions. RT-PCR was performed for genes known to be expressed in the three tissue fractions and t-distributed stochastic neighbor embedding (t-SNE) plots were used to select the muscle, MTJ, and tendon samples from five horses for RNA sequencing. The expression of previously known and unknown genes identified through RNA sequencing was studied by immunofluorescence on human hamstring MTJ tissue. The main finding was that RNA sequencing identified the expression of a panel of 61 genes enriched at the MTJ. Of these, 48 genes were novel for the MTJ and 13 genes had been reported to be associated with the MTJ in earlier studies. The expression of known [COL22A1 (collagen XXII), NCAM (neural cell adhesion molecule), POSTN (periostin), NES (nestin), OSTN (musclin/osteocrin)] and previously undescribed [MNS1 (meiosis-specific nuclear structural protein 1), and LCT (lactase)] MTJ genes was confirmed at the protein level by immunofluorescence on tissue sections of human MTJ. In conclusion, in muscle-tendon interface tissue enriched with myofiber tips, we identified the expression of previously unknown MTJ genes representing diverse biological processes, which may be important in the maintenance of the specialized MTJ.
Collapse
Affiliation(s)
- Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|