1
|
Zhu M, Li X, Guo J, Zhang Z, Guo X, Li Z, Lin J, Li P, Jiang Z, Zhu Y. Orexin A protects against cerebral ischemia-reperfusion injury by enhancing reperfusion in ischemic cortex via HIF-1α-ET-1/eNOS pathway. Brain Res Bull 2024; 218:111105. [PMID: 39442584 DOI: 10.1016/j.brainresbull.2024.111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The purpose of this study was to investigate the protective effect and underlying mechanism of orexin A on cerebral ischemia-reperfusion injury, specifically through vasodilation mediated by the hypoxia inducible factor-1α (HIF-1α)-Endothelin-1(ET-1)/endothelial nitric oxide synthase (eNOS) pathway. A model of middle cerebral artery occlusion was established in both wild-type SD rats with exogenous orexin A intervention and in orexin A transgenic rats. Neurological deficit scores and cerebral infarction areas were assessed, and ischemic cortical blood flow was monitored. Gene and protein expression levels of HIF-1α, HIF-2α, ET-1, and three types of NOS were detected using real-time RT-qPCR and Western blot analysis, respectively. Additionally, nitric oxide (NO) levels in the cortex were analyzed through biochemical detection methods. Orexin A demonstrated a protective effect by reducing cerebral infarction and improving neurological deficits, which was achieved by increasing cortical blood flow during reperfusion. This protective mechanism was associated with upregulated HIF-1α expression, downregulated ET-1 expression, upregulated eNOS expression, and increased NO production. This study demonstrates the protective effect of orexin A on cerebral ischemia-reperfusion injury, achieved by regulating the release of vasomotor substances to enhance cortical blood flow during reperfusion. These findings suggest that orexin A may represent a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Minxia Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.
| | - Xiaofeng Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Jing Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zhaojun Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xu Guo
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zhuoqi Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Junwei Lin
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Pengfei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Zixuan Jiang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Yifan Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
2
|
Maruyama T, Ueta Y. Internal and external modulation factors of the orexin system (REVIEW). Peptides 2023; 165:171009. [PMID: 37054895 DOI: 10.1016/j.peptides.2023.171009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Orexin-A and -B (identical to hypocretin-1 and -2) are neuropeptides synthesized in the lateral hypothalamus and perifornical area, and orexin neurons project their axon terminals broadly throughout the entire central nervous system (CNS). The activity of orexins is mediated by two specific G protein-coupled receptors (GPCRs), termed orexin type1 receptor (OX1R) and orexin type2 receptor (OX2R). The orexin system plays a relevant role in various physiological functions, including arousal, feeding, reward, and thermogenesis, and is key to human health. Orexin neurons receive various signals related to environmental, physiological, and emotional stimuli. Previous studies have reported that several neurotransmitters and neuromodulators influence the activation or inhibition of orexin neuron activity. In this review, we summarize the modulating factors of orexin neurons in the sleep/wake rhythm and feeding behavior, particularly in the context of the modulation of appetite, body fluids, and circadian signaling. We also describe the effects of life activity, behavior, and diet on the orexin system. Some studies have observed phenomena that have been verified in animal experiments, revealing the detailed mechanism and neural pathway, while their applications to humans is expected in future research.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
3
|
Jiang K, He T, Ji Y, Zhu T, Jiang E. The perspective of hypertension and salt intake in Chinese population. Front Public Health 2023; 11:1125608. [PMID: 36875386 PMCID: PMC9981806 DOI: 10.3389/fpubh.2023.1125608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Salt intake is too high nowadays. It has been widely recognized that there is a close relationship between hypertension (HTN) and dietary salt intake. Investigations reveal that long-term high salt intake, mainly sodium intake, induces a relevant increase in blood pressure in hypertensive and normotensive individuals. According to most scientific evidence, a diet with high salt intake in public increases cardiovascular risk, salted-related HTN, and other HTN-associated outcomes. Given the clinical importance, this review aims to present the prevalence of HTN and trends in salt intake in the Chinese population and will comprehensively discuss the risk factors, causes, and mechanisms of the association between salt intake and HTN. The review also highlights the education of Chinese people regarding salt intake and the cost-effectiveness of salt reduction from a global perspective. Finally, the review will emphasize the need to customize the unique Chinese practices to reduce salt intake and how awareness changes people's eating lifestyle and helps adopt diet salt reduction strategies.
Collapse
Affiliation(s)
- Kexin Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Tingting He
- Department of Basic Nursing, Henan Technical Institute, Zhengzhou, China
| | - Yongzhi Ji
- Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, China
- Department of Scientific Research, Scope Research Institute of Electrophysiology, Kaifeng, China
| |
Collapse
|
4
|
Cassinotti L, Guil M, Bianciotti L, Vatta M. Role of Brain Endothelin Receptor Type B (ET B) in the Regulation of Tyrosine Hydroxylase in the Olfactory Bulb of DOCA-Salt Hypertensive Rats. Curr Vasc Pharmacol 2023; 21:246-256. [PMID: 37349999 DOI: 10.2174/1570161121666230622121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects. OBJECTIVE The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction. RESULTS Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression. CONCLUSION These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.
Collapse
Affiliation(s)
- Luis Cassinotti
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Guil
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Bianciotti
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Vatta
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Bigalke JA, Shan Z, Carter JR. Orexin, Sleep, Sympathetic Neural Activity, and Cardiovascular Function. Hypertension 2022; 79:2643-2655. [PMID: 36148653 PMCID: PMC9649879 DOI: 10.1161/hypertensionaha.122.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Inadequate sleep duration and quality are associated with reduced cardiovascular health and increased mortality. Experimental evidence points to the sympathetic nervous system as a key mediator in the observed relationship between poor sleep and cardiovascular dysfunction. However, brain mechanisms underpinning the impaired sympathetic function associated with poor sleep remain unclear. Recent evidence suggests the central orexin system, particularly orexins A and B and their receptors, have a key regulatory role for sleep in animal and human models. While orexin system activity has been observed to significantly impact sympathetic regulation in animals, the extension of these findings to humans has been difficult due to an inability to directly assess orexin system activity in humans. However, direct measures of sympathetic activity in populations with narcolepsy and chronic insomnia, 2 sleep disorders associated with deficient and excessive orexin neural activity, have allowed indirect assessment of the relationships between orexin, sleep, and sympathetic regulation. Further, the recent pharmaceutical development of dual orexin receptor antagonists for use in clinical insomnia populations offers an unprecedented opportunity to examine the mechanistic role of orexin in sleep and cardiovascular health in humans. The current review assesses the role of orexin in both sleep and sympathetic regulation from a translational perspective, spanning animal and human studies. The review concludes with future research directions necessary to fully elucidate the mechanistic role for orexin in sleep and sympathetic regulation in humans.
Collapse
Affiliation(s)
- Jeremy A. Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana
- Department of Psychology, Montana State University, Bozeman, Montana
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jason R. Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
- Department of Psychology, Montana State University, Bozeman, Montana
| |
Collapse
|
6
|
Parekh RU, White A, Leffler KE, Biancardi VC, Eells JB, Abdel-Rahman AA, Sriramula S. Hypothalamic kinin B1 receptor mediates orexin system hyperactivity in neurogenic hypertension. Sci Rep 2021; 11:21050. [PMID: 34702886 PMCID: PMC8548389 DOI: 10.1038/s41598-021-00522-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 12/05/2022] Open
Abstract
Brain orexin system hyperactivity contributes to neurogenic hypertension. We previously reported upregulated neuronal kinin B1 receptor (B1R) expression in hypertension. However, the role of central B1R activation on the orexin system in neurogenic hypertension has not been examined. We hypothesized that kinin B1R contributes to hypertension via upregulation of brain orexin-arginine vasopressin signaling. We utilized deoxycorticosterone acetate (DOCA)-salt hypertension model in wild-type (WT) and B1R knockout (B1RKO) mice. In WT mice, DOCA-salt-treatment increased gene and protein expression of orexin A, orexin receptor 1, and orexin receptor 2 in the hypothalamic paraventricular nucleus and these effects were attenuated in B1RKO mice. Furthermore, DOCA-salt- treatment increased plasma arginine vasopressin levels in WT mice, but not in B1RKO mice. Cultured primary hypothalamic neurons expressed orexin A and orexin receptor 1. B1R specific agonist (LDABK) stimulation of primary neurons increased B1R protein expression, which was abrogated by B1R selective antagonist R715 but not by the dual orexin receptor antagonist, ACT 462206, suggesting that B1R is upstream of the orexin system. These data provide novel evidence that B1R blockade blunts orexin hyperactivity and constitutes a potential therapeutic target for the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Acacia White
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Korin E Leffler
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Jeffrey B Eells
- 4Department of Anatomy and Cell Biology, Brody School of Medicine at East, Carolina University, Greenville, NC, 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| |
Collapse
|
7
|
Fan Y, Jiang E, Gao H, Bigalke J, Chen B, Yu C, Chen Q, Shan Z. Activation of Orexin System Stimulates CaMKII Expression. Front Physiol 2021; 12:698185. [PMID: 34276418 PMCID: PMC8282234 DOI: 10.3389/fphys.2021.698185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Hyperactivity of the orexin system within the paraventricular nucleus (PVN) has been shown to contribute to increased sympathetic nerve activity (SNA) and blood pressure (BP) in rodent animals. However, the underlying molecular mechanisms remain unclear. Here, we test the hypothesis that orexin system activation stimulates calcium/calmodulin-dependent kinase II (CaMKII) expression and activation, and stimulation of CaMKII expressing PVN neurons increases SNA and BP. Real-time PCR and/or western blot were carried out to test the effect of orexin-A administration on CaMKII expression in the PVN of normal Sprague Dawley (SD) rats and orexin receptor 1 (OX1R) expressing PC12 cells. Immunostaining was performed to assess OX1R cellular localization in the PVN of SD rats as well as orexin-A treatment on CaMKII activation in cultured hypothalamic neurons. In vivo sympathetic nerve recordings were employed to test the impact of optogenetic stimulation of CaMKII-expressing PVN neurons on the renal SNA (RSNA) and BP. The results showed that intracerebroventricular injection of orexin-A into the SD rat increases mRNA expression of CaMKII subunits in the PVN. In addition, Orexin-A treatment increases CaMKII expression and its phosphorylation in OX1R-expressing PC12 cells. Furthermore, Orexin-A treatment increases CaMKII activation in cultured hypothalamic neurons from neonatal SD rats. Finally, optogenetic excitation of PVN CaMKII-expressing neurons results in robust increases in RSNA and BP in SD rats. Our results suggest that increased orexin system activity activates CaMKII expression in cardiovascular relevant regions, and this may be relevant to the downstream cardiovascular effects of CaMKII.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,School of Life Sciences, Henan University, Kaifeng, China
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Huanjia Gao
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jeremy Bigalke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Bojun Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunxiu Yu
- Health Research Institute, Michigan Technological University, Houghton, MI, United States.,Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Qinghui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|