1
|
Masserdotti A, Gasik M, Grillari-Voglauer R, Grillari J, Cargnoni A, Chiodelli P, Papait A, Magatti M, Romoli J, Ficai S, Di Pietro L, Lattanzi W, Silini AR, Parolini O. Unveiling the human fetal-maternal interface during the first trimester: biophysical knowledge and gaps. Front Cell Dev Biol 2024; 12:1411582. [PMID: 39144254 PMCID: PMC11322133 DOI: 10.3389/fcell.2024.1411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Paola Chiodelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Jacopo Romoli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Ficai
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
2
|
Louwagie EM, Russell SR, Hairston JC, Nottman C, Nhan-Chang CL, Fuchs K, Gyamfi-Bannerman C, Booker W, Andrikopoulou M, Friedman A, Zork N, Wapner R, Vink J, Mourad M, Feltovich HM, House MD, Myers KM. Uterus and cervix anatomical changes and cervix stiffness evolution throughout pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592023. [PMID: 38746471 PMCID: PMC11092586 DOI: 10.1101/2024.05.01.592023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The coordinated biomechanical performance, such as uterine stretch and cervical barrier function, within maternal reproductive tissues facilitates healthy human pregnancy and birth. Quantifying normal biomechanical function and detecting potentially detrimental biomechanical dysfunction (e.g., cervical insufficiency, uterine overdistention, premature rupture of membranes) is difficult, largely due to minimal data on the shape and size of maternal anatomy and material properties of tissue across gestation. This study quantitates key structural features of human pregnancy to fill this knowledge gap and facilitate three-dimensional modeling for biomechanical pregnancy simulations to deeply explore pregnancy and childbirth. These measurements include the longitudinal assessment of uterine and cervical dimensions, fetal weight, and cervical stiffness in 47 low-risk pregnancies at four time points during gestation (late first, middle second, late second, and middle third trimesters). The uterine and cervical size were measured via 2-dimensional ultrasound, and cervical stiffness was measured via cervical aspiration. Trends in uterine and cervical measurements were assessed as time-course slopes across pregnancy and between gestational time points, accounting for specific participants. Patient-specific computational solid models of the uterus and cervix, generated from the ultrasonic measurements, were used to estimate deformed uterocervical volume. Results show that for this low-risk cohort, the uterus grows fastest in the inferior-superior direction from the late first to middle second trimester and fastest in the anterior-posterior and left-right direction between the middle and late second trimester. Contemporaneously, the cervix softens and shortens. It softens fastest from the late first to the middle second trimester and shortens fastest between the late second and middle third trimester. Alongside the fetal weight estimated from ultrasonic measurements, this work presents holistic maternal and fetal patient-specific biomechanical measurements across gestation.
Collapse
|
3
|
Lintao RCV, Kammala AK, Vora N, Yaklic JL, Menon R. Fetal membranes exhibit similar nutrient transporter expression profiles to the placenta. Placenta 2023; 135:33-42. [PMID: 36913807 DOI: 10.1016/j.placenta.2023.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION During pregnancy, the growth of the fetus is supported by the exchange of nutrients, waste, and other molecules between maternal and fetal circulations in the utero-placental unit. Nutrient transfer, in particular, is mediated by solute transporters such as solute carrier (SLC) and adenosine triphosphate-binding cassette (ABC) proteins. While nutrient transport has been extensively studied in the placenta, the role of human fetal membranes (FM), which was recently reported to have a role in drug transport, in nutrient uptake remains unknown. OBJECTIVES This study determined nutrient transport expression in human FM and FM cells and compared expression with placental tissues and BeWo cells. METHODS RNA sequencing (RNA-Seq) of placental and FM tissues and cells was done. Genes of major solute transporter groups, such as SLC and ABC, were identified. Proteomic analysis of cell lysates was performed via nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to confirm expression at a protein level. RESULTS We determined that FM tissues and cells derived from the fetal membrane tissues express nutrient transporter genes, and their expression is similar to that seen in the placenta or BeWo cells. In particular, transporters involved in macronutrient and micronutrient transfer were identified in both placental and FM cells. Consistent with RNA-Seq findings, carbohydrate transporters (3), vitamin transport-related proteins (8), amino acid transporters (21), fatty acid transport-related proteins (9), cholesterol transport-related proteins (6) and nucleoside transporters (3) were identified in BeWo and FM cells, with both groups sharing similar nutrient transporter expression. CONCLUSION This study determined the expression of nutrient transporters in human FMs. This knowledge is the first step in improving our understanding of nutrient uptake kinetics during pregnancy. Functional studies are required to determine the properties of nutrient transporters in human FMs.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; College of Medicine, University of the Philippines Manila, 547 Pedro Gil St., Manila, 1000, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; John Sealy School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Jerome L Yaklic
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
4
|
Truong N, Menon R, Richardson L. The Role of Fetal Membranes during Gestation, at Term, and Preterm Labor. PLACENTA AND REPRODUCTIVE MEDICINE 2023; 2:4. [PMID: 38304894 PMCID: PMC10831903 DOI: 10.54844/prm.2022.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
During pregnancy, the fetal membranes (i.e., amniochorionic membranes) surround the intrauterine cavity and provide mechanical, immune, and endocrine support to protect the fetus. Though they are a vital component of the intrauterine cavity, the fetal membranes are largely overlooked as an extension of the placenta, leading to a poor understanding of their role during gestation, parturition, or preterm birth. The fetal membranes are comprised of fetal cellular and stromal layers and line up with maternal decidua forming the feto-maternal interface during pregnancy. This interface plays a large role during pregnancy and the induction of term or preterm parturition (e.g., labor). Here we summarize the function of the fetal membranes focusing on their role during gestation at term, and during preterm births.
Collapse
Affiliation(s)
- Nina Truong
- The University of Texas Medical Branch John Sealy School of Medicine at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
5
|
Menon R. Fetal inflammatory response at the fetomaternal interface: A requirement for labor at term and preterm. Immunol Rev 2022; 308:149-167. [PMID: 35285967 DOI: 10.1111/imr.13075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Human parturition at term and preterm is an inflammatory process synchronously executed by both fetomaternal tissues to transition them from a quiescent state t an active state of labor to ensure delivery. The initiators of the inflammatory signaling mechanism can be both maternal and fetal. The placental (fetal)-maternal immune and endocrine mediated homeostatic imbalances and inflammation are well reported. However, the fetal inflammatory response (FIR) theories initiated by the fetal membranes (amniochorion) at the choriodecidual interface are not well established. Although immune cell migration, activation, and production of proparturition cytokines to the fetal membranes are reported, cellular level events that can generate a unique set of inflammation are not well discussed. This review discusses derangements to fetal membrane cells (physiologically and pathologically at term and preterm, respectively) in response to both endogenous and exogenous factors to generate inflammatory signals. In addition, the mechanisms of inflammatory signal propagation (fetal signaling of parturition) and how these signals cause immune imbalances at the choriodecidual interface are discussed. In addition to maternal inflammation, this review projects FIR as an additional mediator of inflammatory overload required to promote parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Ganguly E, Kammala AK, Benson M, Richardson LS, Han A, Menon R. Organic Anion Transporting Polypeptide 2B1 in Human Fetal Membranes: A Novel Gatekeeper for Drug Transport During Pregnancy? Front Pharmacol 2022; 12:771818. [PMID: 34987396 PMCID: PMC8721670 DOI: 10.3389/fphar.2021.771818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Current intervention strategies have not been successful in reducing the risks of adverse pregnancy complications nor maternal and fetal morbidities associated with pregnancy complications. Improving pregnancy and neonatal outcomes requires a better understanding of drug transport mechanisms at the feto-maternal interfaces, specifically the placenta and fetal membrane (FM). The role of several solute carrier uptake transporter proteins (TPs), such as the organic anion transporting polypeptide 2B1 (OATP2B1) in transporting drug across the placenta, is well-established. However, the mechanistic role of FMs in this drug transport has not yet been elucidated. We hypothesize that human FMs express OATP2B1 and functions as an alternate gatekeeper for drug transport at the feto-maternal interface. We determined the expression of OATP2B1 in term, not-in-labor, FM tissues and human FM cells [amnion epithelial cell (AEC), chorion trophoblast cell (CTC), and mesenchymal cells] using western blot analyses and their localization using immunohistochemistry. Changes in OATP2B1 expression was determined for up to 48 h after stimulation with cigarette smoke extract (CSE), an inducer of oxidative stress. The functional role of OATP2B1 was determined by flow cytometry using a zombie violet dye substrate assay. After OATP2B1 gene silencing, its functional relevance in drug transport through the feto-maternal interface was tested using a recently developed feto-maternal interface organ-on-a-chip (OOC) system that contained both FM and maternal decidual cells. Propagation of a drug (Rosuvastatin, that can be transported by OATP2B1) within the feto-maternal interface OOC system was determined by mass spectrometry. FMs express OATP2B1 in the CTC and AEC layers. In FM explants, OATP2B1 expression was not impacted by oxidative stress. Uptake of the zombie violet dye within AECs and CTCs showed OATP2B1 is functionally active. Silencing OATP2B1 in CTCs reduced Rosuvastatin propagation from the decidua to the fetal AEC layer within the feto-maternal interface-OOC model. Our data suggest that TPs in FMs may function as a drug transport system at the feto-maternal interface, a function that was previously thought to be performed exclusively by the placenta. This new knowledge will help improve drug delivery testing during pregnancy and contribute to designing drug delivery strategies to treat adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Esha Ganguly
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Meagan Benson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Lauren S Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
7
|
Mei Y, Ran Y, Liu Z, Zhou Y, He J, Yin N, Qi H. IL-27 Mediates Th1 Cells Infiltration in Fetal Membranes in Preterm Labor. Reprod Sci 2021; 29:1764-1775. [PMID: 34859389 DOI: 10.1007/s43032-021-00803-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022]
Abstract
The objective of this study is to investigate the effect of IL-27 on Th1 cells infiltration in human fetal membranes (FMs) in preterm labor (PL). The expression of Th1 cells specific transcription factor (T-bet), Th1 cells infiltration related molecules (CXCL9, CXCL10, CXCL11, and ICAM-1), and IL-27 receptor α subunit (IL-27Rα) was compared in human FMs from pregnant women in PL group and term labor (TL) group. In vitro, rhIL-27 was added to the culture medium of amniotic epithelial cells (WISH cells) to detect the expression of CXCL9, CXCL10, CXCL11, and ICAM-1. Furthermore, the underlying signaling pathway was detected by single-sample gene set enrichment analysis and western blot analysis. The expression of T-bet and CXCL9, CXCL10, CXCL11, and ICAM-1 as well as IL-27Rα was higher in human FMs from PL group than TL group. In vitro, rhIL-27 could upregulate the expression of CXCL9, CXCL10, CXCL11, and ICAM-1 in WISH cells. Using gene-set enrichment analysis of FMs, JAK/STAT signaling pathway was found to be activated by IL-27 signaling in PL. Using western blot analysis, JAK2/STAT1/STAT3 signaling pathway was confirmed to be enhanced in rhIL-27 treated WISH cells. In addition, AG490 (JAK2 inhibitor) could inhibit the secretion of CXCL9, CXCL10, and CXCL11 in WISH cells stimulated by rhIL-27. Our results suggested that IL-27 may promote Th1 cells infiltration in human FMs in PL, by promoting the expression of CXCL9, CXCL10, and CXCL11 at least partly through JAK2/STAT1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Youwen Mei
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuxin Ran
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Liu
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunqian Zhou
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie He
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nanlin Yin
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China. .,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China. .,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Hongbo Qi
- International Collaborative Jointed Laboratory of Maternal and Fetal Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China. .,State Key Laboratory of Maternal, Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016, China. .,Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|