1
|
Zhong W, Fu J, Liao J, Ouyang S, Yin W, Liang Y, Liu K. A protective role of nintedanib in peritoneal fibrosis through H19-EZH2-KLF2 axis via impeding mesothelial-to-mesenchymal transition. Int Urol Nephrol 2024; 56:1987-1999. [PMID: 38097887 DOI: 10.1007/s11255-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/16/2023] [Indexed: 05/14/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF), a common complication of long-term peritoneal dialysis, accounts for peritoneal ultrafiltration failure to develop into increased mortality. Nintedanib has previously been shown to protect against multi-organ fibrosis, including PF. Unfortunately, the precise molecular mechanism underlying nintedanib in the pathogenesis of PF remains elusive. METHODS The mouse model of PF was generated by chlorhexidine gluconate (CG) injection with or without nintedanib administration, either with the simulation for the cell model of PF by constructing high-glucose (HG)-treated human peritoneal mesothelial cells (HPMCs). HE and Masson staining were applied to assess the histopathological changes of peritoneum and collagen deposition. FISH, RT-qPCR, western blot and immunofluorescence were employed to examine distribution or expression of targeted genes. Cell viability was detected using CCK-8 assay. Cell morphology was observed under a microscope. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were applied to validate the H19-EZH2-KLF2 regulatory axis. RESULTS Aberrantly overexpressed H19 was observed in both the mouse and cell model of PF, of which knockdown significantly blocked HG-induced mesothelial-to-mesenchymal transition (MMT) of HPMCs. Moreover, loss of H19 further strengthened nintedanib-mediated suppressive effects against MMT process in a mouse model of PF. Mechanistically, H19 could epigenetically repressed KLF2 via recruiting EZH2. Furthermore, TGF-β/Smad pathway was inactivated by nintedanib through mediating H19/KLF2 axis. CONCLUSION In summary, nintedanib disrupts MMT process through regulating H19/EZH2/KLF2 axis and TGF-β/Smad pathway, which laid the experimental foundation for nintedanib in the treatment of PF.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Jia Fu
- Department of Oncology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, Hunan, People's Republic of China
| | - Jin Liao
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Shaxi Ouyang
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Wei Yin
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Yumei Liang
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Kanghan Liu
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Liu H, Yang M, Li K, Gao Q, Zheng J, Gong X, Wang H, Sun Y, Chang X. A transcriptomics-based investigation of the mechanism of pulmonary fibrosis induced by nickel oxide nanoparticles. ENVIRONMENTAL TOXICOLOGY 2024; 39:2374-2389. [PMID: 38165020 DOI: 10.1002/tox.24088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are an emerging nanomaterial, which poses a huge threat to the health of workplace population. Nanoparticles induce pulmonary fibrosis, and its mechanisms are associated with noncoding RNAs (ncRNAs). However, ncRNAs and competing endogenous RNA (ceRNA) networks which involved in NiONP-induced pulmonary fibrosis are still unclear. This study aimed to identify ncRNA-related ceRNA networks and investigate the role of the Wnt/β-catenin pathway in pulmonary fibrosis. Male Wistar rats were intratracheally instilled with 0.015, 0.06, and 0.24 mg/kg NiONPs twice a week for 9 weeks. First, we found there were 93 circularRNAs (circRNAs), 74 microRNAs (miRNAs), 124 long non-coding RNAs (lncRNAs), and 1675 messenger RNAs (mRNAs) differentially expressed through microarray analysis. Second, we constructed ceRNA networks among lncRNAs/circRNAs, miRNAs and mRNAs and identified two ceRNA networks (lncMelttl16/miR-382-5p/Hsd17b7 and circIqch/miR-181d-5p/Stat1) after real time-quantitative polymerase chain reaction (RT-qPCR) validation. Furthermore, based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, ncRNAs were found to be involved in biological processes and signaling pathways related to pulmonary fibrosis. KEGG analysis showed that NiONPs activated the Wnt/β-catenin pathway in rats. In vitro, HFL1 cells were treated with 0, 50, 100, and 200 μg/mL NiONPs for 24 h. We found that NiONPs induced collagen deposition and Wnt/β-catenin pathway activation. Moreover, a blockade of Wnt/β-catenin pathway alleviated NiONP-induced collagen deposition. In conclusion, these observations suggested that ncRNAs were crucial in pulmonary fibrosis development and that the Wnt/β-catenin pathway mediated the deposition of collagen.
Collapse
Affiliation(s)
- Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Chawra HS, Agarwal M, Mishra A, Chandel SS, Singh RP, Dubey G, Kukreti N, Singh M. MicroRNA-21's role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract 2024; 254:155091. [PMID: 38194804 DOI: 10.1016/j.prp.2024.155091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
MicroRNA-21 (miR-21) was recognized as a key figure in the intricate web of tumor biology, with a prominent role in regulating the PTEN tumor suppressor gene and the PI3K/AKT cascade. This review elucidates the multifaceted interactions between miR-21, PTEN, and the PI3K/AKT signaling, shedding light on their profound implications in cancer initiation, progression, and therapeutic strategies. The core of this review delves into the mechanical intricacies of miR-21-mediated PTEN suppression and its consequent impact on PI3K/AKT pathway activation. It explores how miR-21, as an oncogenic miRNA, targets PTEN directly or indirectly, resulting in uncontrolled activation of PI3K/AKT, fostering cancerous cell survival, proliferation, and evasion of apoptosis. Furthermore, the abstract emphasizes the clinical relevance of these molecular interactions, discussing their implications in various cancer types, prognostic significance, and potential as therapeutic targets. The review provides insights into ongoing research efforts to develop miR-21 inhibitors and strategies to restore PTEN function, offering new avenues for cancer treatment. This article illuminates the critical function of miR-21 in PTEN suppression and PI3K/AKT activation, offering profound insights into its implications for cancer biology and the potential for targeted interventions.
Collapse
Affiliation(s)
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | | | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| |
Collapse
|
4
|
Shao Q, Jiang C, Zhang Q, Liu J, Jin B, Zhao M, Xia Y. Knockdown of AK142426 suppresses M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun. J Gene Med 2023; 25:e3524. [PMID: 37194352 DOI: 10.1002/jgm.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Peritoneal fibrosis is a common complication of peritoneal dialysis, which may lead to ultrafiltration failure and ultimately treatment discontinuation. LncRNAs participate in many biological processes during tumorigenesis. We investigated the role of AK142426 in peritoneal fibrosis. METHODS The AK142426 level in peritoneal dialysis (PD) fluid was detected by quantitative real-time-PCR assay. The M2 macrophage distribution was determined by flow cytometry. The inflammatory cytokines of TNF-α and TGF-β1 were measured by ELISA assay. The direct interaction between AK142426 and c-Jun was evaluated by RNA pull-down assay. In addition, the c-Jun and fibrosis related proteins were assessed by western blot analysis. RESULTS The PD-induced peritoneal fibrosis mouse model was successfully established. More importantly, PD treatment induced M2 macrophage polarization and the inflammation in PD fluid, which might be associated with exosome transmission. Fortunately, AK142426 was observed to be upregulated in PD fluid. Mechanically, knockdown of AK142426 suppressed M2 macrophage polarization and inflammation. Furthermore, AK142426 could upregulate c-Jun through binding c-Jun protein. In rescue experiments, overexpression of c-Jun could partially abolish the inhibitory effect of sh-AK142426 on the activation of M2 macrophages and inflammation. Consistently, knockdown of AK142426 alleviated peritoneal fibrosis in vivo. CONCLUSIONS This study demonstrated that knockdown of AK142426 suppressed M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun, suggesting that AK142426 might be a promising therapeutic target for patients of peritoneal fibrosis.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.v15i14 10.18632/aging.204883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
6
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
7
|
Huang Y, Ma J, Fan Y, Yang L. Mechanisms of human umbilical cord mesenchymal stem cells-derived exosomal lncRNA GAS5 in alleviating EMT of HPMCs via Wnt/β-catenin signaling pathway. Aging (Albany NY) 2023; 15:204719. [PMID: 37229651 DOI: 10.18632/aging.204719] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Prolonged peritoneal dialysis (PD) can result in epithelial-to-mesenchymal transition (EMT) and peritoneal fibrosis (PF), which can cause patients to discontinue PD. It is imperative to urgently investigate effective measures to mitigate PF. This study aims to reveal mechanisms of exosomal lncRNA GAS5 derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) on EMT of human peritoneal mesothelial cells (HPMCs) under high glucose (HG) conditions. METHODS HPMCs were stimulated with 2.5% glucose. The effects on EMT of HPMCs were observed by using an hUC-MSC conditioned medium (hUC-MSC-CM) and extracted exosomes. After hUC-MSCs were transfected with GAS5 siRNA, exosomes were extracted to act on HPMCs for detecting EMT markers, PTEN, and Wnt/β-catenin pathway, lncRNA GAS5 and miR-21 expressions in HPMCs. RESULTS We found that HG could induce the EMT of HPMCs. Compared with the HG group, the hUC-MSC-CM could alleviate the EMT of HPMCs induced by HG through exosomes. Exosomes in the hUC-MSC-CM entered HPMCs, by transferring lncRNA GAS5 to HPMCs, which down-regulates miR-21 and up-regulates PTEN, thus finally alleviating EMT of HPMCs. The Wnt/β-catenin pathway plays an essential role in alleviating EMT of HPMCs by exosomes in the hUC-MSC-CM. By transferring lncRNA GAS5 to HPMCs, exosomes derived from hUC-MSCs may competitively bind to miR-21 to regulate suppression on target PTEN genes and alleviate EMT of HPMCs through the Wnt/β-catenin pathway. CONCLUSIONS Exosomes from the hUC-MSCs-CM could alleviate the EMT of HPMCs induced by HG via regulating lncRNA GAS5/miR-21/PTEN through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jianfei Ma
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yi Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
8
|
Zhang H, Zhou Y, Wen D, Wang J. Noncoding RNAs: Master Regulator of Fibroblast to Myofibroblast Transition in Fibrosis. Int J Mol Sci 2023; 24:1801. [PMID: 36675315 PMCID: PMC9861037 DOI: 10.3390/ijms24021801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Myofibroblasts escape apoptosis and proliferate abnormally under pathological conditions, especially fibrosis; they synthesize and secrete a large amount of extracellular matrix (ECM), such as α-SMA and collagen, which leads to the distortion of organ parenchyma structure, an imbalance in collagen deposition and degradation, and the replacement of parenchymal cells by fibrous connective tissues. Fibroblast to myofibroblast transition (FMT) is considered to be the main source of myofibroblasts. Therefore, it is crucial to explore the influencing factors regulating the process of FMT for the prevention, treatment, and diagnosis of FMT-related diseases. In recent years, non-coding RNAs, including microRNA, long non-coding RNAs, and circular RNAs, have attracted extensive attention from scientists due to their powerful regulatory functions, and they have been found to play a vital role in regulating FMT. In this review, we summarized ncRNAs which regulate FMT during fibrosis and found that they mainly regulated signaling pathways, including TGF-β/Smad, MAPK/P38/ERK/JNK, PI3K/AKT, and WNT/β-catenin. Furthermore, the expression of downstream transcription factors can be promoted or inhibited, indicating that ncRNAs have the potential to be a new therapeutic target for FMT-related diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Xiangya Road, Changsha 410000, China
| |
Collapse
|
9
|
Qiao X, Ding Y, Wu D, Zhang A, Yin Y, Wang Q, Wang W, Kang J. The roles of long noncoding RNA-mediated macrophage polarization in respiratory diseases. Front Immunol 2023; 13:1110774. [PMID: 36685535 PMCID: PMC9849253 DOI: 10.3389/fimmu.2022.1110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Macrophages play an essential role in maintaining the normal function of the innate and adaptive immune responses during host defence. Macrophages acquire diverse functional phenotypes in response to various microenvironmental stimuli, and are mainly classified into classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophage polarization participates in the inflammatory, fibrotic, and oncogenic processes of diverse respiratory diseases by changing phenotype and function. In recent decades, with the advent of broad-range profiling methods such as microarrays and next-generation sequencing, the discovery of RNA transcripts that do not encode proteins termed "noncoding RNAs (ncRNAs)" has become more easily accessible. As one major member of the regulatory ncRNA family, long noncoding RNAs (lncRNAs, transcripts >200 nucleotides) participate in multiple pathophysiological processes, including cell proliferation, differentiation, and apoptosis, and vary with different stimulants and cell types. Emerging evidence suggests that lncRNAs account for the regulation of macrophage polarization and subsequent effects on respiratory diseases. In this review, we summarize the current published literature from the PubMed database concerning lncRNAs relevant to macrophage polarization and the underlying molecular mechanisms during the occurrence and development of respiratory diseases. These differentially expressed lncRNAs are expected to be biomarkers and targets for the therapeutic regulation of macrophage polarization during disease development.
Collapse
|
10
|
Zhang M, Qiu B, Sun M, Wang Y, Wei M, Gong Y, Yan M. Preparation of Black pepper (Piper nigrum L.) essential oil nanoparticles and its antitumor activity on triple negative breast cancer in vitro. J Food Biochem 2022; 46:e14406. [PMID: 36121189 DOI: 10.1111/jfbc.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 01/13/2023]
Abstract
The active compounds isolated from Black pepper have anticancer effects, but the bioactivity of Black pepper essential oil (BP-EO) is rarely studied. BP-EO has poor stability and a suitable dose form should be prepared for in vivo delivery. Triple negative breast cancer (TNBC) has attracted more and more attention due to its high mitotic index, high metastasis rate and poor prognosis. In this study, the composition of BP-EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and nanoparticles (NPs) loaded with BP-EO were prepared by nanoprecipitation method using Eudragit L100 as a carrier. We investigated the preparation, characterization, stability and in vitro release of nanoparticles. MTT assay, cell wound healing, Transwell invasion assay and Western blot were used to study the anti-tumor effect and mechanism of MDA-MB-231 cells. The GC-MS analysis identified a total of 33 compounds among which alkenes account for 63.55%. The prepared BP-EO NPs exhibited nanoscale morphology, good stability and pH-responsive and sustained release character which is suitable for in vivo delivery. BP-EO NPs significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells. Furthermore, BP-EO NPs significantly inhibited the expressions of Wnt and β-catenin and significantly activated the expression of GSK-3β in MDA-MB-231 cells. Therefore, BP-EO NPs prepared in this study provide a new effective strategy for the treatment of TNBC. PRACTICAL APPLICATIONS: Black pepper is rich in essential oil and has excellent antioxidant and antibacterial activities. However, the anti-tumor activity of BP-EO has not been studied. In this study, we found that BP-EO has excellent anticancer activity. To achieve effective encapsulation of black pepper essential oil and an excellent anti-triple negative breast cancer activity, nanoparticles loaded with BP-EO were prepared using Eudragit L100 as the carrier by the nanoprecipitation method. The in vitro study revealed that BP-EO NPs inhibited proliferation, migration and invasion of MDA-MB-231 cells via inhibiting the Wnt/β-Catenin signaling pathway. This study provides new ideas and innovations for the treatment of invasive triple negative breast cancer in the future. At the same time, we will further reveal the application potential, pharmacokinetic characteristics and precise mechanism of BP-EO NPs in vivo in subsequent studies.
Collapse
Affiliation(s)
- Mengying Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Beibei Qiu
- Department of Pathology, Feicheng Hospital affiliated to Shandong First Medical University, Feicheng, China
| | - Mengjia Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yunfei Wang
- Quality Assurance Department, Shandong Xinhua Pharmaceutical Company Limited, Zibo, China
| | - Meijiao Wei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meixing Yan
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| |
Collapse
|
11
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
12
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:1498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial-mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
13
|
Xiang Z, Liqing Y, Qingqing Y, Qiang H, Hongbo C. Retard or exacerbate: Role of long non-coding RNA growth arrest-specific 5 in the fibrosis. Cytokine Growth Factor Rev 2022; 67:89-104. [DOI: 10.1016/j.cytogfr.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
|
14
|
Xiong J, Wu B, Hou Q, Huang X, Jia L, Li Y, Jiang H. Comprehensive Analysis of LncRNA AC010789.1 Delays Androgenic Alopecia Progression by Targeting MicroRNA-21 and the Wnt/β-Catenin Signaling Pathway in Hair Follicle Stem Cells. Front Genet 2022; 13:782750. [PMID: 35242164 PMCID: PMC8886141 DOI: 10.3389/fgene.2022.782750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Androgen alopecia (AGA), the most common type of alopecia worldwide, has become an important medical and social issue. Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the progression of various human diseases, including AGA. However, the potential roles of lncRNAs in hair follicle stem cells (HFSCs) and their subsequent relevance for AGA have not been fully elucidated. The current study aimed to explore the function and molecular mechanism of the lncRNA AC010789.1 in AGA progression. Methods: We investigated the expression levels of AC010789.1 in AGA scalp tissues compared with that in normal tissues and explored the underlying mechanisms using bioinformatics. HFSCs were then isolated from hair follicles of patients with AGA, and an AC010789.1-overexpressing HFSC line was produced and verified. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to verify the molecular mechanisms involved. Results: AC010789.1 overexpression promoted the proliferation and differentiation of HFSCs. Mechanistically, we demonstrated that AC010789.1 overexpression promotes the biological function of HFSCs by downregulating miR-21-5p and TGF-β1 expression but upregulating the Wnt/β-catenin signaling pathway. Conclusion: These results reveal that overexpression of AC010789.1 suppresses AGA progression via downregulation of hsa-miR-21-5p and TGF-β1 and promotion of the Wnt/β-catenin signaling pathway, highlighting a potentially promising strategy for AGA treatment.
Collapse
Affiliation(s)
- Jiachao Xiong
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Hou
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingling Jia
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yufei Li
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yufei Li, ; Hua Jiang,
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yufei Li, ; Hua Jiang,
| |
Collapse
|
15
|
Chen Z, Chu X, Xu J. Detection and analysis of long noncoding RNA expression profiles related to epithelial-mesenchymal transition in keloids. Biomed Eng Online 2022; 21:2. [PMID: 35012558 PMCID: PMC8751032 DOI: 10.1186/s12938-022-00976-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The role of epithelial-mesenchymal transition (EMT) in the pathogenesis of keloids is currently raising increasing attention. Long noncoding RNAs (lncRNAs) govern a variety of biological processes, such as EMT, and their dysregulation is involved in many diseases including keloid disease. The aim of this study was to identify differentially expressed EMT-related lncRNAs in keloid tissues versus normal tissues and to interpret their functions. RESULTS Eleven lncRNAs and 16 mRNAs associated with EMT were identified to have differential expression between keloid and normal skin tissues (fold change > 1.5, P < 0.05). Gene Ontology (GO) analysis showed that these differentially expressed mRNAs functioned in the extracellular matrix, protein binding, the positive regulation of cellular processes, the Set1C/COMPASS complex and histone acetyltransferase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these mRNAs are involved in pathways in cancer. The lncRNA, XLOC_000587 may promote cell proliferation and migration by enhancing the expression of ENAH, while AF268386 may facilitate the invasive growth of keloids by upregulating DDR2. CONCLUSIONS We characterized the differential expression profiles of EMT-related lncRNAs and mRNAs in keloids, which may contribute to preventing the occurrence and development of keloids by targeting the corresponding signaling pathways. These lncRNAs and mRNAs may provide biomarkers for keloid diagnosis and serve as potential targets for the treatment of this disease.
Collapse
Affiliation(s)
- Zhixiong Chen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xi Chu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|