1
|
Fernandes JFT, Wilson LJ, Dingley AF, Hearn AN, Johnson KO, Hicks KM, Twist C, Hayes LD. Advancing Age Is Not Associated With Greater Exercise-Induced Muscle Damage: A Systematic Review, Meta-Analysis, and Meta-Regression. J Aging Phys Act 2025:1-19. [PMID: 40174882 DOI: 10.1123/japa.2024-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE The aim of this paper was to undertake a Preferred Reporting Items for Systematic Reviews and Meta-Analysis-accordant meta-analysis comparing exercise-induced muscle damage (EIMD) in older and younger adults. METHODS Google Scholar, PubMed, and SPORTDiscus were searched in June 2023 for the terms "ageing" OR "age" OR "middle-aged" OR "old" OR "older" OR "elderly" OR "masters" OR "veteran" AND "muscle damage" OR "exercise-induced muscle damage" OR "exercise-induced muscle injury" OR "contraction-induced injury" OR "muscle soreness" OR "delayed onset muscle soreness" OR "creatine kinase." From 1,092 originally identified titles, 36 studies were included which had an exercise component comparing a younger against an older group. The outcome variables of EIMD were muscle function, muscle soreness, and creatine kinase. A meta-analysis was conducted on change to EIMD after exercise in older versus younger adults using standardized mean difference (SMD) and an inverse-variance random effects model. RESULTS Change after 24 and 72 hr, and peak change, in muscle function was not different between old and young (SMD range = -0.16 to -0.35). Muscle soreness was greater in younger than older adults for all comparisons (SMD range = -0.34 to -0.62). Creatine kinase was greater in younger than older adults at 24 hr (SMD = -0.32), as was peak change (SMD = -0.32). A relationship between sex and peak muscle function change was evident for males (SMD = -0.45), but not females (SMD = -0.44). All other meta-regression was nonsignificant. CONCLUSION Advancing age is not associated with greater symptoms of EIMD. The implication of this study is that the older adults can pursue regular physical activity without concern for experiencing greater EIMD.
Collapse
Affiliation(s)
- John F T Fernandes
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Laura J Wilson
- London Sport Institute, Middlesex University, London, United Kingdom
| | - Amelia F Dingley
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Andrew N Hearn
- Department of HE Sport, Hartpury University, Hartpury, United Kingdom
| | - Kelsie O Johnson
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kirsty M Hicks
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
- Washington Spirit, Columbia, WA, USA
| | - Craig Twist
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lawrence D Hayes
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
2
|
Grossini E, Venkatesan S, Pour MMO, Conti A, Concina D, Opizzi A, Sanguedolce A, Rinaldi C, Russotto S, Gramaglia CM, Zeppegno P, Panella M. Beneficial effects of a combined lifestyle intervention for older people in a long-term-care facility on redox balance and endothelial function. Heliyon 2024; 10:e35850. [PMID: 39220897 PMCID: PMC11363854 DOI: 10.1016/j.heliyon.2024.e35850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective It has recently been highlighted how a short healthy life-style program (LSP) can improve the functional outcomes of older people admitted to a Long-Term Care (LTC) facility. Although it is known that life-style medicine-based interventions can exert anti-aging effects through the modulation of oxidative stress and mitochondrial function, the mechanisms underlying the aforementioned effects have not been clarified, yet. For this reason, in this study, the outcomes were focused on the investigation of the possible mechanisms underlying the benefits of a short LSP in older people. This was achieved by examining circulating markers of oxidative stress and immunosenescence, such as Tymosin β (Tβ4), before and after LSP and the effects of plasma of older people undergone or not LSP on endothelial cells. Methods Fifty-four older people were divided into two groups (n = 27 each): subjects undergoing LSP and subjects not undergoing LSP (control). The LSP consisted of a combination of caloric restriction, physical activity, and psychological intervention and lasted 3 months. Plasma samples were taken before (T0) and after LSP (T1) and were used to measure thiobarbituric acid reactive substances (TBARS), 8-hydroxy-2-deoxyguanosine (8OHdG), 8-Isoprostanes (IsoP), glutathione (GSH), superoxide dismutase (SOD) activity and Tβ4. In addition, plasma was used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) and mitochondrial ROS (MitoROS) release. Results At T1, in LSP group we did not detect the increase of plasma TBARS and IsoP, which was observed in control. Also, plasma levels of 8OHdG were lower in LSP group vs control. In addition, LSP group only showed an increase of plasma GSH and SOD activity. Moreover, plasma levels of Tβ4 were more preserved in LSP group. Finally, at T1, in HUVEC treated with plasma from LSP group only we found an increase of the mitochondrial membrane potential and a reduction of ROS and MitoROS release in comparison with T0. Conclusions The results of this study showed that a short LSP in older persons exerts antiaging effects by modulating oxidative stress also at cellular levels. Implications of those findings could be related to both prognostic and therapeutic strategies, which could be pursued as antiaging methods.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sakthipryian Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Conti
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Diego Concina
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
- Anteo Impresa Sociale, 13900 Biella, Italy
| | - Annalisa Opizzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
- Anteo Impresa Sociale, 13900 Biella, Italy
| | - Agatino Sanguedolce
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carmela Rinaldi
- Education and Research area, Health Professions' Direction, Maggiore Della Carità Hospital, Novara, Italy
| | - Sophia Russotto
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Sports and Health - Patient Safety line, Universitas Miguel Hernandez, Alicante, Spain
- Residency Program of Psychiatry, Università del Piemonte Orientale, Novara, Italy
| | - Carla Maria Gramaglia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
3
|
Ge Y, Chen Y, Zhang Y, Hu Y, Jiang F, Lu X, Wu C. Shared genes of polycystic ovary syndrome and sedentary behavior as a novel immune landscape biomarker for endometrial cancer. Sci Rep 2024; 14:19111. [PMID: 39154063 PMCID: PMC11330454 DOI: 10.1038/s41598-024-69951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Endometrial cancer (EC) is associated with significant risk factors such as polycystic ovarian syndrome (PCOS) and sedentary behavior. In our study, we aim to employ machine learning algorithms to investigate the potential molecular processes that underlie their interaction and explore their respective roles in the diagnosis and immunotherapy of EC. The GEO database provides access to microarray data, which was utilized in this study to identify gene expression modules associated with PCOS and sedentary behavior, using weighted gene expression network analysis (WGCNA). Cluego software was then employed to investigate the energy enrichment of shared pathways in both PCOS and sedentary individuals, and differential gene analysis was used to confirm another two databases. The miRNAs-mRNAs controlled network was constructed to verify the pathway. The immune-related factors of the shared pathway in EC were then analyzed. Finally, to validate our findings, we conducted cell experiments using EC cell lines (AN3CA, KLE, Ishikawa, RL95-2, and HEC-1A). We found that increased intracellular aromatic compound anabolism is a common feature of both PCOS and sedentary individuals. We then developed a disease pathway model that was based on the common genetic characteristics of PCOS and sedentary behavior. We utilized pathway typing in EC samples and found a significant survival difference between the two subgroups, with the upregulated expression type exhibiting an immune-hot phenotype. Finally, the experimental results confirmed the expression of the hub gene (NAA15) in EC. The findings of our study suggest that genes related to the intracellular aromatic compound metabolic pathway can be used for immunotherapy of EC.
Collapse
Affiliation(s)
- Yao Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - Yifang Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
4
|
Llorente A, Brokāne A, Mlynska A, Puurand M, Sagini K, Folkmane S, Hjorth M, Martin‐Gracia B, Romero S, Skorinkina D, Čampa M, Cešeiko R, Romanchikova N, Kļaviņa A, Käämbre T, Linē A. From sweat to hope: The role of exercise-induced extracellular vesicles in cancer prevention and treatment. J Extracell Vesicles 2024; 13:e12500. [PMID: 39183543 PMCID: PMC11345496 DOI: 10.1002/jev2.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
The benefits of regular physical exercise on cancer prevention, as well as reducing fatigue, treatment side effects and recurrence, and improving quality of life and overall survival of cancer patients, are increasingly recognised. Initial studies showed that the concentration of extracellular vesicles (EVs) increases during physical activity and that EVs carry biologically active cargo. These EVs are released by blood cells, skeletal muscle and other organs involved in exercise, thus suggesting that EVs may mediate tissue crosstalk during exercise. This possibility triggered a great interest in the study of the roles of EVs in systemic adaptation to exercise and in their potential applications in the prevention and treatment of various diseases, including cancer. This review presents studies exploring the concentration and molecular cargo of EVs released during exercise. Furthermore, we discuss putative stimuli that may trigger EV release from various cell types, the biological functions and the impact of exercise-induced EVs on cancer development and progression. Understanding the interplay between exercise, EVs, and cancer biology may offer insights into novel therapeutic strategies and preventive measures for cancer.
Collapse
Affiliation(s)
- Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
- Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Agnese Brokāne
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Agata Mlynska
- Laboratory of ImmunologyNational Cancer InstituteVilniusLithuania
- Department of Chemistry and BioengineeringVilnius Gediminas Technical UniversityVilniusLithuania
| | - Marju Puurand
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Signe Folkmane
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Beatriz Martin‐Gracia
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Diana Skorinkina
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Mārtiņš Čampa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | - Rūdolfs Cešeiko
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | | | - Aija Kļaviņa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Tuuli Käämbre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Aija Linē
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
5
|
Fernandez‐Sanjurjo M, Pinto‐Hernandez P, Dávalos A, Díaz‐Martínez ÁE, Martín‐Hernández R, Castilla‐Silgado J, Toyos‐Rodríguez C, Whitham M, Amado‐Rodríguez L, Muñiz‐Albaiceta G, Terrados N, Fernández‐García B, Iglesias‐Gutiérrez E. Next-generation sequencing reveals that miR-16-5p, miR-19a-3p, miR-451a, and miR-25-3p cargo in plasma extracellular vesicles differentiates sedentary young males from athletes. Eur J Sport Sci 2024; 24:766-776. [PMID: 38874986 PMCID: PMC11235846 DOI: 10.1002/ejsc.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 06/15/2024]
Abstract
A sedentary lifestyle and Olympic participation are contrary risk factors for global mortality and incidence of cancer and cardiovascular disease. Extracellular vesicle miRNAs have been described to respond to exercise. No molecular characterization of young male sedentary people versus athletes is available; so, our aim was to identify the extracellular vesicle miRNA profile of chronically trained young endurance and resistance male athletes compared to their sedentary counterparts. A descriptive case-control design was used with 16 sedentary young men, 16 Olympic male endurance athletes, and 16 Olympic male resistance athletes. Next-generation sequencing and RT-qPCR and external and internal validation were performed in order to analyze extracellular vesicle miRNA profiles. Endurance and resistance athletes had significant lower levels of miR-16-5p, miR-19a-3p, and miR-451a compared to sedentary people. Taking all together, exercise-trained miRNA profile in extracellular vesicles provides a differential signature of athletes irrespective of the type of exercise compared to sedentary people. Besides, miR-25-3p levels were specifically lower in endurance athletes which defines its role as a specific responder in this type of athletes. In silico analysis of this profile suggests a role in adaptive energy metabolism in this context that needs to be experimentally validated. Therefore, this study provides for the first time basal levels of circulating miRNA in extracellular vesicles emerge as relevant players in intertissue communication in response to chronic exercise exposure in young elite male athletes.
Collapse
Affiliation(s)
- Manuel Fernandez‐Sanjurjo
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | | | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid MetabolismIMDEA Food InstituteCEI UAM + CSICMadridSpain
| | - Ángel Enrique Díaz‐Martínez
- Clinical LaboratorySports Medicine CenterSpanish Sports Health Protection AgencySpanish GovernmentMadridSpain
| | | | - Juan Castilla‐Silgado
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Celia Toyos‐Rodríguez
- NanoBioAnalysis GroupDepartment of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Laura Amado‐Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Unidad de Cuidados Intensivos CardiológicosHospital Universitario Central de AsturiasOviedoSpain
- Centro de Investigación Biomédica en Red (CIBER)‐Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Department of MedicineUniversity of OviedoOviedoSpain
| | - Guillermo Muñiz‐Albaiceta
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Unidad de Cuidados Intensivos CardiológicosHospital Universitario Central de AsturiasOviedoSpain
- Centro de Investigación Biomédica en Red (CIBER)‐Enfermedades RespiratoriasInstituto de Salud Carlos IIIMadridSpain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Nicolás Terrados
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Unidad Regional de Medicina DeportivaAvilésSpain
| | - Benjamín Fernández‐García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
- Department of Morphology and Cell Biology (Anatomy)University of OviedoOviedoSpain
| | - Eduardo Iglesias‐Gutiérrez
- Department of Functional Biology (Physiology)University of OviedoOviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| |
Collapse
|
6
|
Fischetti F, Poli L, De Tommaso M, Paolicelli D, Greco G, Cataldi S. The role of exercise parameters on small extracellular vesicles and microRNAs cargo in preventing neurodegenerative diseases. Front Physiol 2023; 14:1241010. [PMID: 37654673 PMCID: PMC10466047 DOI: 10.3389/fphys.2023.1241010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Physical activity (PA), which includes exercise, can reduce the risk of developing various non-communicable diseases, including neurodegenerative diseases (NDs), and mitigate their adverse effects. However, the mechanisms underlying this ability are not yet fully understood. Among several possible mechanisms proposed, such as the stimulation of brain-derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), the possible involvement of particular vesicular structures enclosed in lipid membranes known as extracellular vesicles (EVs) has recently been investigated. These EVs would appear to exert a paracrine and systemic action through their ability to carry various molecules, particularly so-called microRNAs (miRNAs), performing a function as mediators of intercellular communication. Interestingly, EVs and miRNAs are differentially expressed following PA, but evidence on how different exercise parameters may differentially affect EVs and the miRNAs they carry is still scarce. In this review we summarized the current human findings on the effects of PA and different exercise parameters exerted on EVs and their cargo, focusing on miRNAs molecules, and discussing how this may represent one of the biological mechanisms through which exercise contributes to preventing and slowing NDs.
Collapse
Affiliation(s)
- Francesco Fischetti
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Luca Poli
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Marina De Tommaso
- Applied Neurophysiology and Pain Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Damiano Paolicelli
- Neurophysiology Operative Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| |
Collapse
|
7
|
Pietrangelo T, Santangelo C, Bondi D, Cocci P, Piccinelli R, Piacenza F, Rosato E, Azman SNA, Binetti E, Farina M, Locatelli M, Brunetti V, Le Donne C, Marramiero L, Di Filippo ES, Verratti V, Fulle S, Scollo V, Palermo F. Endurance-dependent urinary extracellular vesicle signature: shape, metabolic miRNAs, and purine content distinguish triathletes from inactive people. Pflugers Arch 2023; 475:691-709. [PMID: 37156970 PMCID: PMC10185655 DOI: 10.1007/s00424-023-02815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) enriched with bioactive molecules have gained considerable attention in nanotechnology because they are critical to intercellular communication while maintaining low immunological impact. Among biological matrices, urine has emerged as a noninvasive source of extracellular-contained liquid biopsy, currently of interest as a readout for physiological adaptations. Therefore, we aimed to evaluate chronic adaptations of endurance sport practice in terms of urinary EV parameters and evaluated by food consumption assessment. Two balanced groups of 13 inactive controls vs. triathlon athletes were enrolled; their urinary EVs were obtained by differential ultracentrifugation and analyzed by dynamic light scattering and transmission electron and atomic force microscopy. The cargo was analyzed by means of purine and miRNA content through HPLC-UV and qRT-PCR. Specific urinary EV signatures differentiated inactive versus endurance-trained in terms of peculiar shape. Particularly, a spheroid shape, smaller size, and lower roughness characterize EVs from triathletes. Metabolic and regulatory miRNAs often associated with skeletal muscle (i.e., miR378a-5p, miR27a-3p, miR133a, and miR206) also accounted for a differential signature. These miRNAs and guanosine in urinary EVs can be used as a readout for metabolic status along with the shape and roughness of EVs, novel informative parameters that are rarely considered. The network models allow scholars to entangle nutritional and exercise factors related to EVs' miRNA and purine content to depict metabolic signatures. All in all, multiplex biophysical and molecular analyses of urinary EVs may serve as promising prospects for research in exercise physiology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Raffaela Piccinelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Francesco Piacenza
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Enrica Rosato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - S N Afifa Azman
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Enrico Binetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
- Institute for Microelectronics and Microsystems, National Research Council of Italy, Lecce, Italy
| | - Marco Farina
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Valentina Scollo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesco Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
8
|
Alehossein P, Taheri M, Tayefeh Ghahremani P, Dakhlallah D, Brown CM, Ishrat T, Nasoohi S. Transplantation of Exercise-Induced Extracellular Vesicles as a Promising Therapeutic Approach in Ischemic Stroke. Transl Stroke Res 2023; 14:211-237. [PMID: 35596116 DOI: 10.1007/s12975-022-01025-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Clinical evidence affirms physical exercise is effective in preventive and rehabilitation approaches for ischemic stroke. This sustainable efficacy is independent of cardiovascular risk factors and associates substantial reprogramming in circulating extracellular vesicles (EVs). The intricate journey of pluripotent exercise-induced EVs from parental cells to the whole-body and infiltration to cerebrovascular entity offers several mechanisms to reduce stroke incidence and injury or accelerate the subsequent recovery. This review delineates the potential roles of EVs as prospective effectors of exercise. The candidate miRNA and peptide cargo of exercise-induced EVs with both atheroprotective and neuroprotective characteristics are discussed, along with their presumed targets and pathway interactions. The existing literature provides solid ground to hypothesize that the rich vesicles link exercise to stroke prevention and rehabilitation. However, there are several open questions about the exercise stressors which may optimally regulate EVs kinetic and boost brain mitochondrial adaptations. This review represents a novel perspective on achieving brain fitness against stroke through transplantation of multi-potential EVs generated by multi-parental cells, which is exceptionally reachable in an exercising body.
Collapse
Affiliation(s)
- Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Pargol Tayefeh Ghahremani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
| | - Duaa Dakhlallah
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Cairo, Egypt
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran.
| |
Collapse
|
9
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
10
|
Exploratory integrated analysis of circulating exosomal miRNA and tissue mRNA related to long-term physical activity for more than 25 years: a bioinformatics study. Eur J Appl Physiol 2023. [PMID: 36867245 DOI: 10.1007/s00421-023-05165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Physical activity exerts various positive effects on both physical and mental health. Although the comprehensive expression profiles of each microRNA (miRNA) or messenger RNA (mRNA) related to physical activity have already been reported, the association between miRNA and mRNA remains unclear. Here, the integrated study was conducted to comprehensively explore the potential miRNA-mRNA relationships related to long-term physical activity over 25 years. Genome-wide public deposited mRNA expression data of adipose tissue (GSE20536) from six same-sex twin pairs (no information regarding gender) and of skeletal muscle tissue (GSE20319) from ten same-sex twin pairs (four female twin pairs) were used, and differentially expressed mRNAs (DEMs) related to discordant leisure-time physical activity for 30 years were identified using GEO2R. Overlapped mRNAs between DEMs and predicted possible target mRNAs, based on a previous study and TargetScan tool, were then identified and used as long-term physical activity-related mRNAs targeted by miRNAs. In adipose tissue, 36 mRNAs and 42 mRNAs were identified as upregulated or downregulated DEMs, respectively. Based on the results of the overlapped analysis between DEMs and predicted possible target mRNAs targeted by miRNAs, 15 upregulated mRNAs, including NDRG4, FAM13A, ST3GAL6, and AFF1, and 10 downregulated mRNAs, including RPL14, LBP, and GLRX, were identified. In muscle tissue, three downregulated mRNAs overlapped with the predicted target mRNAs targeted by miRNAs. Fifteen upregulated mRNAs in adipose tissue showed a tendency to enrich in "Cardiovascular" in GAD_DISEASE_CLASS category. Potential miRNA-mRNA relationships related to long-term physical activity over 25 years were identified through bioinformatics analysis.
Collapse
|
11
|
Warnier G, DE Groote E, Delcorte O, Nicolas Martinez D, Nederveen JP, Nilsson MI, Francaux M, Pierreux CE, Deldicque L. Effects of a 6-wk Sprint Interval Training Protocol at Different Altitudes on Circulating Extracellular Vesicles. Med Sci Sports Exerc 2023; 55:46-54. [PMID: 36069865 DOI: 10.1249/mss.0000000000003031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE This study aimed to investigate the modulation of circulating exosome-like extracellular vesicles (ELVs) after 6 wk of sprint interval training (SIT) at sea level and at 2000, 3000, and 4000 m. METHODS Thirty trained endurance male athletes (18-35 yr) participated in a 6-wk SIT program (30-s all-out sprint, 4-min 30-s recovery; 4-9 repetitions, 2 sessions per week) at sea level ( n = 8), 2000 m (fraction of inspired oxygen (F io2 ) 0.167, n = 8), 3000 m (F io2 0.145, n = 7), or 4000 m (F io2 0.13, n = 7). Venous blood samples were taken before and after the training period. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis, and characterized according to international standards. Candidate ELV microRNAs (miRNAs) were quantified by real-time polymerase chain reaction. RESULTS When the three hypoxic groups were analyzed separately, only very minor differences could be detected in the levels of circulating particles, ELV markers, or miRNA. However, the levels of circulating particles increased (+262%) after training when the three hypoxic groups were pooled, and tended to increase at sea level (+65%), with no difference between these two groups. A trend to an increase was observed for the two ELV markers, TSG101 (+65%) and HSP60 (+441%), at sea level, but not in hypoxia. Training also seemed to decrease the abundance of miR-23a-3p and to increase the abundance of miR-21-5p in hypoxia but not at sea level. CONCLUSIONS A 6-wk SIT program tended to increase the basal levels of circulating ELVs when performed at sea level but not in hypoxia. In contrast, ELV miRNA cargo seemed to be modulated in hypoxic conditions only. Further research should explore the potential differences in the origin of ELVs between normoxic and local and systemic hypoxic conditions.
Collapse
Affiliation(s)
- Geoffrey Warnier
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, BELGIUM
| | - Estelle DE Groote
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, BELGIUM
| | - Ophélie Delcorte
- CELL Unit, de Duve Institute, Université Catholique de Louvain, Brussels, BELGIUM
| | | | - Joshua P Nederveen
- Department of Pediatrics, McMaster Univesrity Medical Centre, Hamilton, Ontario, CANADA
| | - Mats I Nilsson
- Exerkine Corporation, McMaster University Medical Centre, Hamilton, Ontario, CANADA
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, BELGIUM
| | | | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, BELGIUM
| |
Collapse
|
12
|
Castaño C, Meza-Ramos A, Batlle M, Guasch E, Novials A, Párrizas M. Treatment with EV-miRNAs Alleviates Obesity-Associated Metabolic Dysfunction in Mice. Int J Mol Sci 2022; 23:ijms232314920. [PMID: 36499248 PMCID: PMC9736074 DOI: 10.3390/ijms232314920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and others have shown that the microRNA contents of these vesicles induce transcriptomic changes in acceptor cells, contributing to the adjustment of metabolic homeostasis in response to environmental demands. Here, we explore the potential for modulating obesity- and exercise-derived EV-microRNAs to treat the metabolic dysfunction associated with obesity in mice. Treatment with EV-miRNAs alleviated glucose intolerance and insulin resistance in obese mice to an extent similar to that of high-intensity interval training, although only exercise improved cardiorespiratory fitness and decreased body weight. Mechanistically, EV-miRNAs decreased fatty acid and cholesterol biosynthesis pathways in the liver, reducing hepatic steatosis and increasing insulin sensitivity, resulting in decreased glycemia and triglyceridemia. Our data suggest that manipulation of EV-miRNAs may be a viable strategy to alleviate metabolic dysfunction in obese and diabetic patients who are unable to exercise, although actual physical activity is needed to improve cardiorespiratory fitness.
Collapse
Affiliation(s)
- Carlos Castaño
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
| | - Aline Meza-Ramos
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Montserrat Batlle
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
| | - Eduard Guasch
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
- Cardiovascular Institute, Hospital Clinic, 08036 Barcelona, Spain
| | - Anna Novials
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
- Correspondence: (A.N.); (M.P.)
| | - Marcelina Párrizas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 08036 Barcelona, Spain
- Correspondence: (A.N.); (M.P.)
| |
Collapse
|
13
|
Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int J Mol Sci 2022; 23:ijms232314716. [PMID: 36499053 PMCID: PMC9737617 DOI: 10.3390/ijms232314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Nicole Burns
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
- Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
14
|
Solsona R, Borrani F, Bernardi H, Sanchez AMJ. Perspectives on Epigenetic Markers in Adaptation to Physical Exercise. Microrna 2022; 11:91-94. [PMID: 35307001 DOI: 10.2174/2211536611666220318140844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Robert Solsona
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM) UR4640, Font-Romeu, France.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- INRAE, UMR866, Dynamique Musculaire et Métabolisme (DMEM), University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM) UR4640, Font-Romeu, France
| |
Collapse
|
15
|
Laube W. Physische Aktivität: genetische Gewebekommunikation Basis präventiver Wirkungen. MANUELLE MEDIZIN 2022. [DOI: 10.1007/s00337-022-00889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Darragh IAJ, O’Driscoll L, Egan B. Exercise Training and Circulating Small Extracellular Vesicles: Appraisal of Methodological Approaches and Current Knowledge. Front Physiol 2021; 12:738333. [PMID: 34777006 PMCID: PMC8581208 DOI: 10.3389/fphys.2021.738333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
In response to acute exercise, an array of metabolites, nucleic acids, and proteins are enriched in circulation. Collectively termed "exercise factors," these molecules represent a topical area of research given their speculated contribution to both acute exercise metabolism and adaptation to exercise training. In addition to acute changes induced by exercise, the resting profile of circulating exercise factors may be altered by exercise training. Many exercise factors are speculated to be transported in circulation as the cargo of extracellular vesicles (EVs), and in particular, a sub-category termed "small EVs." This review describes an overview of exercise factors, small EVs and the effects of exercise, but is specifically focused on a critical appraisal of methodological approaches and current knowledge in the context of changes in the resting profile small EVs induced by exercise training, and the potential bioactivities of preparations of these "exercise-trained" small EVs. Research to date can only be considered preliminary, with interpretation of many studies hindered by limited evidence for the rigorous identification of small EVs, and the conflation of acute and chronic responses to exercise due to sample timing in proximity to exercise. Further research that places a greater emphasis on the rigorous identification of small EVs, and interrogation of potential bioactivity is required to establish more detailed descriptions of the response of small EVs to exercise training, and consequent effects on exercise adaptation.
Collapse
Affiliation(s)
- Ian A. J. Darragh
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| |
Collapse
|