1
|
Siqueira BS, Gomes ECZ, Rentz T, Malta A, de Freitas Mathias PC, Balbo SL, Grassiolli S. Vagal Splenic-Dependent Effects Influence Glucose Homeostasis, Insulin Secretion, and Histopathology of the Endocrine Pancreas in Hypothalamic Obese Male Rats: Vagus Nerve and Spleen Interactions Affect the Endocrine Pancreas. ScientificWorldJournal 2025; 2025:9910997. [PMID: 40276696 PMCID: PMC12021492 DOI: 10.1155/tswj/9910997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
Vagus nerve (VN) and spleen dysfunctions are often associated with obesity (Ob). Aim: We evaluated the effects of VN and spleen ablation on adiposity, metabolism, and insulin secretion in hypothalamic obese male rats. Methods: Ob was induced by neonatal subcutaneous injection of monosodium glutamate (4 g/kg). At 60 days of life, Ob animals were randomly distributed into four groups (n = 16 rats/group): sham operation (SHAM), vagotomy (VAG), splenectomy (SPL), and VAG + SPL. Body weight and food intake were monitored for 8 weeks postsurgery. Intraperitoneal glucose tolerance test (ipGTT) and intraperitoneal pyruvate tolerance test (ipPTT) were performed at 148 days of life, and VN activity was recorded at 150 days. After euthanasia (150 days), adiposity, plasma biochemical parameters, glucose-induced insulin secretion (GIIS), and cholinergic and adrenergic islet responsiveness were evaluated. The pancreas was submitted for histopathological analysis, and the protein content of OXPHOS and IL-10 was evaluated in isolated pancreatic islets. Results: Decreased VN activity was confirmed in the Ob-VAG groups, associated with lower visceral adiposity, triglycerides, and plasma insulin, together with improved insulin sensibility and pyruvate tolerance, compared to Ob-SHAM rats. Spleen absence reduced VN activity and cholinergic insulinotropic responses, with deleterious effects on the endocrine pancreas. Furthermore, Ob-VAG + SPL rats presented greater reductions in GIIS and more severe endocrine pancreas histopathology, compared to the Ob-SHAM group, without altered islet size or number or protein content of OXPHOS or IL-10. Conclusion: Vagal and splenic interactions contribute to glucose homeostasis control in hypothalamic obese rats, modulating insulin secretion and pancreas histology.
Collapse
Affiliation(s)
- Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| | - Ellen Carolina Zawoski Gomes
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
- Centro Universitario Fundacao Assis Gurgacz, Cascavel, Brazil
| | - Thiago Rentz
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ananda Malta
- Universidade Estadual de Maringa, Maringá, Brazil
| | | | - Sandra Lucinei Balbo
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná-Campus de Cascavel, Cascavel, Brazil
| |
Collapse
|
2
|
Tarantino G, Citro V. Crosstalk Between the Spleen and Other Organs/Systems: Downstream Signaling Events. IMMUNO 2024; 4:479-501. [DOI: 10.3390/immuno4040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
The aim of this review was to gather pieces of information from available critically evaluated published articles concerning any interplay in which the spleen could be involved. For many years, the spleen has been alleged as an unnecessary biological structure, even though splenomegaly is an objective finding of many illnesses. Indeed, the previous opinion has been completely changed. In fact, the spleen is not a passive participant in or a simple bystander to a relationship that exists between the immune system and other organs. Recently, it has been evidenced in many preclinical and clinical studies that there are close associations between the spleen and other parts of the body, leading to various spleen–organ axes. Among them, the gut–spleen axis, the liver–spleen axis, the gut–spleen–skin axis, the brain–spleen axis, and the cardio-splenic axis are the most explored and present in the medical literature. Such recent sources of evidence have led to revolutionary new ideas being developed about the spleen. What is more, these observations may enable the identification of novel therapeutic strategies targeted at various current diseases. The time has come to make clear that the spleen is not a superfluous body part, while health system operators and physicians should pay more attention to this organ. Indeed, much work remains to be performed to assess further roles that this biological structure could play.
Collapse
Affiliation(s)
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, 84014 Nocera Inferiore, Italy
| |
Collapse
|
3
|
Li M, Zhao Y, Zhang B, Wang X, Zhao T, Zhao T, Ren W. Hyperglycemia remission after Roux-en-Y gastric bypass: Implicated to altered monocyte inflammatory response in type 2 diabetes rats. Peptides 2022; 158:170895. [PMID: 36240981 DOI: 10.1016/j.peptides.2022.170895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
Hyperglycemia remission by metabolic surgery is implicated in the resolution of low-grade inflammation in type 2 diabetes mellitus (T2DM). However, whether this beneficial effect of metabolic surgery is related to improving monocyte inflammatory response remains undefined. This investigation is addressed to evaluate this relationship. For this purpose, T2DM rats were subjected to Roux-en-Y gastric bypass (RYGB) and/or monocyte depletion or splenic sympathetic denervation. Fasting blood glucose (FBG), plasma tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were measured, and monocyte inflammatory response was assessed in vitro. The data showed that RYGB significantly reduced lipopolysaccharide (LPS)-induced release of TNF-α and IL-1β from peripheral monocytes while alleviating hyperglycemia and reducing plasma TNF-α and IL-1β levels. Hyperglycemia resulting from monocyte depletion by injection of clodronate liposomes resolved one week earlier than vehicle control after RYGB. Splenic denervation abrogated the glucose-lowering effect and decreased LPS-stimulated TNF-α and IL-1β release from monocytes following RYGB. Overall, our results reveal that a marked reduction of monocyte inflammatory response after RYGB contributes to hyperglycemia remission in T2DM rats. The beneficial effect of RYGB is mediated through vagal-spleen axis anti-inflammatory activity.
Collapse
Affiliation(s)
- Mingxia Li
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Yifeng Zhao
- Department of Gastrointestinal Tumor Surgery, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Bingjie Zhang
- Internal Medicine of Traditional Chinese Medicine, The First Hospital of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaofang Wang
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Ting Zhao
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Tiejun Zhao
- College of Medical Biochemistry, Hebei North University, Zhangjiakou 075000, China
| | - Weidong Ren
- Department of Endocrinology, The First Hospital of Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
4
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
5
|
de Souza DW, Ceglarek VM, Siqueira BS, Volinski CZ, Nenevê JZ, Arruda JPDA, Vettorazzi JF, Grassiolli S. Phenylhydrazine-induced anemia reduces subcutaneous white and brown adipose tissues in hypothalamic obese rats. Exp Physiol 2022; 107:575-588. [PMID: 35396880 DOI: 10.1113/ep089883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FUNDINGS What is the central question of this study? This study aims to assess whether an anemic state could modify adiposity and metabolic parameters in hypothalamic obese rats. What is the main finding and its importance? Our results indicate that hypothalamic obese rats do not display iron deficiency. However, the pharmacological induction of anemia in hypothalamic-obese rats resulted in reduced adiposity, characterized by a decrease in subcutaneous white and brown adipose tissue depots. These findings suggest that iron imbalance in obesity may elevate lipolysis. ABSTRACT Iron imbalance is frequent in obesity. Herein, we evaluated the impact of anemia induced by phenylhydrazine on adiposity and metabolic state of hypothalamic obese rats. Hypothalamic obesity was induced by high doses of glutamate monosodium (MSG; 4g/Kg) administered to neonatal male rats (n = 20). Controls (CTL; non-obese rats) received saline equimolar (n = 20). Rats were weaned at 21 days of life. At 70 days, half of the rats received three intraperitoneal doses of phenylhydrazine (PHZ; 40mg/Kg/dose) or saline solution. Body weight and food intake were accompanied for four weeks after PHZ administration. At 92 days, rats were euthanized, blood was collected for microcapillary hematocrit (Hct) analysis and plasma quantification of glucose, triglycerides, total cholesterol, and iron levels. The liver, the spleen, and the white (WAT) and brown (BAT) adipose tissues were excised, weighed, and used for histology. MSG-treated rats developed obesity, hypertriglyceridemia, and insulin resistance, compared to CTL rats, without changes in iron levels and Hct. PHZ administration reduced iron plasma levels and promoted similar tissue injuries in the spleen and liver from MSG and CTL rats. However, in MSG-treated rats, PHZ decreased fasting glucose levels and Hct, as well as diminished the subcutaneous WAT and BAT mass. Although MSG-obesity does not affect iron plasma levels and Hct by itself, PHZ-induced anemia associated with obesity induces a marked drop in subcutaneous WAT and BAT mass, suggesting that iron imbalance may lead to increased lipolytic responses in obese rats, compared to lean rats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Domwesley Wendreo de Souza
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Vanessa Marieli Ceglarek
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS, Brasil
| | - Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Caroline Zanella Volinski
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Juliane Zanon Nenevê
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - João Paulo de Amorin Arruda
- Programa de Pós-Graduação em Odontologia, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | | | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| |
Collapse
|