1
|
Yan C, Ma J, Tian D, Yan T, Zhang C, Zhang F, Zhao Y, Fu S, Zhang Q, Xia M, Li Y, Sun Y. Evaluation of pulmonary artery pressure, blood indices, and myocardial microcirculation in rats returning from high altitude to moderate altitude. Eur Radiol Exp 2024; 8:131. [PMID: 39565546 PMCID: PMC11579275 DOI: 10.1186/s41747-024-00514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/09/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND To investigate changes in pulmonary artery pressure (PAP), blood indices, and myocardial microcirculation in rats returning from high altitude (HA) to moderate altitude (MA). METHODS Forty 4-week-old male Sprague-Dawley rats were randomly divided into four groups with ten rats in each group. One group was transported to the MA area (MA-group), and the other three groups were transported to HA (HA-group-A, HA-group-B, and HA-group-C). After 28 weeks of age, the rats from the HA area were transported to the MA area for 0 days, 10 days, and 20 days, respectively. PAP, routine blood tests, and computed tomography myocardial perfusion indices were measured. RESULTS Compared with the MA-group, the body weight of HA-groups decreased (p < 0.05), and PAP in HA-group-A and HA-group-B increased (p < 0.05). In the HA groups, PAP initially increased and then decreased. Compared with the MA-group, red blood cells (RBC), hemoglobin (HGB), and hematocrit (HCT) of rats in HA-group-A increased (p < 0.05). Compared with the HA-group-A, RBC, HGB, and HCT of HA-group-B gradually decreased (p < 0.05) while MCV decreased (p < 0.05), and PLT of HA-group-C increased (p < 0.05). Compared with the MA group, blood flow (BF) and blood volume (BV) of the HA-group-A decreased (p < 0.05). Compared with the HA-group-A, TTP increased first and then decreased (p < 0.05), and BF and BV increased gradually (p < 0.05). Pathological results showed that myocardial fiber arrangement was disordered, and cell space widened in the HA group. CONCLUSION PAP, blood parameters, and myocardial microcirculation in rats returning from high to MA exhibited significant changes. RELEVANCE STATEMENT This study provides an experimental basis for understanding the physiological and pathological mechanisms during the process of deacclimatization to HA and offers new insights for the prevention and treatment of deacclimatization to HA syndrome. KEY POINTS Forty rats were raised in a real plateau environment. Myocardial microcirculation was detected by CT myocardial perfusion imaging. The PAP of the unacclimated rats increased first and then decreased. The myocardial microcirculation of the deacclimated rats showed hyperperfusion changes.
Collapse
Affiliation(s)
- Chunlong Yan
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Department of Radiology, Jining No.1 People's Hospital, Jining, China
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Jinfeng Ma
- Department of Hematology, Jining No.1 People's Hospital, Jining, China
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | | | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, China
| | - Mengxue Xia
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yue Li
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China.
| |
Collapse
|
2
|
Yu Y, Gao P, Xie L, Wang K, Dou D, Gong Q. Is Smoking Associated with the Risk of Acute Mountain Sickness? A Systematic Review and Meta-Analysis. High Alt Med Biol 2024; 25:226-237. [PMID: 38847053 DOI: 10.1089/ham.2022.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Background: Controversy remains in the association between smoking and the risk of acute mountain sickness (AMS). Therefore, a systematic review of the existing literature may help clarify this association. Methods: We conducted a systematic search of PubMed, Embase, and Cochrane Library from database inception up to October 19, 2021. Both unadjusted and adjusted relative risks (RRs) and 95% confidence intervals (CIs) were calculated to compare the risk of AMS in the smoking and nonsmoking groups. Meta-regression was conducted to explore the factors causing heterogeneity of the studies, and subsequent stratified analysis was performed to present the pooled RR in different subgroups. Publication bias was assessed using funnel plots. Results: A total of 28 eligible articles (31 studies) were included. The pooled unadjusted and adjusted RRs were 0.88 (95% CI: 0.78-1.01) and 0.87 (95% CI: 0.77-0.99), respectively, using random-effect models. Publication bias was observed owing to restrictions on the sample size. The ascending altitude and sex composition of the study population were likely sources of heterogeneity according to meta-regression. Studies on participants with an ascending altitude of over 3,500 m or composed of both males and females reported a slight but not significant protective effect of smoking on the risk of AMS, with high heterogeneity. Conclusions: Smoking had no significant effect on AMS risk in this meta-analysis. Current studies showed high heterogeneity and included little information on quantitative exposure to smoking (i.e., dose and frequency); thus, the results require careful explanation.
Collapse
Affiliation(s)
- Yuelin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Peng Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lianke Xie
- State Grid Shandong Electric Power Company, Electric Power Research Institute, Jinan, China
| | - Kun Wang
- State Grid Shandong Electric Power Company, Electric Power Research Institute, Jinan, China
| | - Dandan Dou
- State Grid Shandong Electric Power Company, Electric Power Research Institute, Jinan, China
| | - Quanquan Gong
- State Grid Shandong Electric Power Company, Electric Power Research Institute, Jinan, China
| |
Collapse
|
3
|
Wang B, Chen S, Song J, Huang D, Xiao G. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications. Front Physiol 2024; 15:1397280. [PMID: 38978820 PMCID: PMC11228308 DOI: 10.3389/fphys.2024.1397280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
High-altitude illnesses, encompassing a spectrum of health threats including Acute Mountain Sickness (AMS), pose significant challenges to individuals exposed to high altitude environments, necessitating effective prophylaxis and immediate management. Given the variability in individual responses to these conditions, accurate prediction of high-altitude illnesses onset is of paramount importance. This review systematically consolidates recent advancements in research on predicting AMS by evaluating existing cohort data, predictive models, and methodologies, while also delving into the application of emerging technologies. Through a thorough analysis of scholarly literature, we discuss traditional prediction methods anchored in physiological parameters (e.g., heart rate, respiratory frequency, blood pressure) and biochemical markers, as well as the integration and utility of novel technologies such as biosensors, genetic testing, and artificial intelligence within high-altitude prediction research. While conventional pre-diction techniques have been extensively used, they are often constrained by limitations in accuracy, reliability, and multifactorial influences. The advent of these innovative technologies holds promise for more precise individual risk assessments and personalized preventive and therapeutic strategies across various forms of AMS. Future research endeavors must pivot decisively towards the meticulous identification and stringent validation of innovative predictive biomarkers and models. This strategic re-direction should catalyze intensified interdisciplinary cooperation to significantly deepen our mechanistic insights into the pathogenesis of AMS while refining existing prediction methodologies. These groundbreaking advancements harbor the potential to fundamentally transform preventive and therapeutic frameworks for high-altitude illnesses, ultimately securing augmented safety standards and wellbeing for individuals operating at elevated altitudes with far-reaching global implications.
Collapse
Affiliation(s)
- Boyuan Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Shanji Chen
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Hunan Primary Digital Engineering Technology Research Center for Medical Prevention and Treatment, Huaihua, China
- National Institute of Hospital Administration (NIHA), Beijing, China
| | | | - Dan Huang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Gexin Xiao
- National Institute of Hospital Administration (NIHA), Beijing, China
| |
Collapse
|
4
|
Sun Y, Ma J, Yan T, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Yan C. Evaluation of cardiac index and right ventricular hypertrophy index in rats under a chronic hypoxic environment at high altitude. Heliyon 2024; 10:e25229. [PMID: 38333787 PMCID: PMC10850543 DOI: 10.1016/j.heliyon.2024.e25229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
High-altitude areas are characterized by low pressure and hypoxia, which have a significant impact on various body systems. This study aimed to investigate the alterations in cardiac index and right ventricular hypertrophy index(RVHI) in rats at different altitudes.Twenty-one male Sprague-Dawley (SD) rats aged 4 weeks were randomly divided into three groups based on altitude. The rats were raised for 28 weeks and then transferred to Qinghai University Plateau Medicine Laboratory. Body weight was measured, heart organs were isolated and weighed, and cardiac index and right ventricular hypertrophy index were determined. Statistical analysis was performed on the data from the three groups. Compared with the plain group, the body weight of the middle-altitude group was significantly decreased (P < 0.05), and cardiac index, RVHI-1, RVHI-2 increased significantly ((P < 0.05). The body weight, whole heart mass, right ventricular mass were significantly decreased in high-altitude group (P < 0.05), RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Compared with the middle-altitude group, the body weight, whole heart mass and right ventricular mass of the high-altitude group were significantly decreased (P < 0.05), and RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Increasing altitude led to a decrease in body weight, whole heart mass, and right ventricular mass in rats, indicating structural changes in the right heart. Additionally, the proportion of right heart to body weight and whole heart increased with altitude.
Collapse
Affiliation(s)
- Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Jinfeng Ma
- Department of Hematology, Jining No.1 People's Hospital, Jining, China
| | | | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Chunlong Yan
- Department of Radiology, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
5
|
Yan C, Tian D, Zhang C, Zhang Q, Sun Y. Evaluation of blood cellular and biochemical parameters in rats under a chronic hypoxic environment at high altitude. Ann Med 2023; 55:898-907. [PMID: 36896573 PMCID: PMC10796155 DOI: 10.1080/07853890.2023.2184859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore the changes in blood cellular and biochemical parameters of rats in a natural environment of low pressure and low oxygen on the plateau. METHODS Male Sprague-Dawley rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. They were raised to 28 weeks of age and then transported to the plateau medical laboratory of Qinghai University. Blood cellular and biochemical parameters were measured and the data of the two groups were statistically analyzed. RESULTS 1. RBC in the HA group was higher than that in the Control group, but there was no significant difference between the two groups (p > 0.05), Compared with the Control group, HGB, MCV, MCH, MCHC and RDW in the HA group were significantly higher (p < 0.05). 2. Compared with the Control group, WBC, LYMP, EO, LYMP% and EO% in the HA group decreased significantly (p < 0.05), and ANC% increased significantly (p < 0.05). 3. In the platelet index, compared with the Control group, PLT in the HA group was significantly reduced (p < 0.05), PDW, MRV, P-LCR were significantly increased (p < 0.05). 4. In blood biochemical indicators, compared with the Control group, AST, TBIL, IBIL, LDH in the HA group decreased significantly (p < 0.05), CK in the HA group increased significantly (p < 0.05). CONCLUSIONS 1. The indexes related to red blood cells, white blood cells, platelets and some biochemical indexes in the blood of rats at high altitude have changed. 2. Under the high altitude environment, the oxygen carrying capacity of SD rats is improved, the resistance to disease may be reduced, the coagulation and hemostasis functions may be affected, and there is a risk of bleeding. The liver function, renal function, heart function and skeletal muscle energy metabolism may be affected. 3. This study can provide an experimental basis for the research on the pathogenesis of high-altitude diseases from the perspective of blood.KEY MESSAGESIn this study, red blood cells, white blood cells, platelets and blood biochemical indicators were included in the real plateau environment to comprehensively analyze the changes of blood cellular and biochemical parameters in rats under the chronic plateau hypobaric hypoxia environment.From the perspective of blood, this study can provide an experimental basis for research on the pathogenesis of high-altitude diseases.Explore the data support of oxygen-carrying capacity, disease resistance and energy metabolism of the body in the natural environment at high altitude.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University, suzhou, China
- Department of Radiology, Jining No.1 People’s Hospital, Jining, China
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, China
| | - Yanqiu Sun
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
6
|
Derstine M, Jean D, Beidleman BA, Pichler Hefti J, Hillebrandt D, Horakova L, Kriemler S, Mateikaitė-Pipirienė K, Paal P, Rosier AJ, Andjelkovic M, Keyes LE. Acute Mountain Sickness and High Altitude Cerebral Edema in Women: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2023; 24:259-267. [PMID: 37870579 DOI: 10.1089/ham.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Derstine, Mia, Dominique Jean, Beth A. Beidleman, Jacqueline Pichler Hefti, David Hillebrandt, Lenka Horakova, Susi Kriemler, Kasté Mateikaité-Pipiriené, Peter Paal, Alison Rosier, Marija Andjelkovic, and Linda E. Keyes. Acute mountain sickness and high altitude cerebral edema in women: A scoping review-UIAA Medical Commission recommendations. High Alt Med Biol. 24:259-267, 2023. Background: Acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) are illnesses associated with rapid ascent to altitudes over 2,500 m in unacclimatized lowlanders. The aim of this scoping review is to summarize the current knowledge on sex differences in the epidemiology, pathophysiology, symptomatology, and treatment of AMS and HACE, especially in women. Methods and Results: The UIAA Medical Commission convened an international author team to review women's health issues at high altitude and to publish updated recommendations. Pertinent literature from PubMed and Cochrane was identified by keyword search combinations (including AMS, HACE, and high altitude), with additional publications found by hand search. The primary search focus was for articles assessing lowland women sojourning at high altitude. Results: The literature search yielded 7,165 articles, 37 of which were ultimately included. The majority of publications included did not find women at increased risk for AMS or HACE. There was extremely limited sex-specific data on risk factors or treatment. Conclusions: There is a limited amount of data on female-specific findings regarding AMS and HACE, with most publications addressing only prevalence or incidence with regard to sex. As such, general prevention and treatment strategies for AMS and HACE should be used regardless of sex.
Collapse
Affiliation(s)
- Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - Dominique Jean
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
| | - Beth A Beidleman
- US Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massachusetts, USA
| | | | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsworthy, United Kingdom
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelesus Medical University, Salzburg, Austria
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Pharmacy, Singidunum University, Belgrade, Serbia
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
7
|
Tang X, Li X, Xin Q, Wang Q, Li S, Yang Y. Anxiety as a Risk Factor for Acute Mountain Sickness Among Young Chinese Men After Exposure at 3800 M: A cross‒sectional Study. Neuropsychiatr Dis Treat 2023; 19:2573-2583. [PMID: 38046832 PMCID: PMC10693273 DOI: 10.2147/ndt.s436438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose We aimed to explore whether anxiety is a risk factor for acute mountain sickness [AMS] in a young Chinese male population. Patients and Methods A total of 143 young Chinese men with a median age of 23 years (IQR, 21-25) were employed in the present study, and they were divided into the AMS+ and AMS- groups according to the Lake Louise AMS score [AMS-S] after exposure at 3800 m for two days. Participants' pulse oximeter saturation [SpO2] and heart rate [HR] were measured. AMS was evaluated using the AMS-S. The anxiety and sleep quality of the subjects were assessed using the Zung Self-Rating Anxiety Scale [SAS] and the Athens Insomnia Scale [AIS], respectively. Outcomes were analysed using Spearman's partial correlation and logistic regression analysis. Results After two days of exposure at 3800 m, the overall prevalence of AMS was 54% in the whole group. The HR was significantly higher in the AMS+ group than in the AMS- group, as well as the SAS score and AIS score. A converse pattern was observed for SpO2. A significant difference was observed for the change in SAS and AIS score between the AMS+ and AMS- groups. Correlation analysis showed that AMS-S was positively correlated with SAS score, AIS score, HR, ΔSAS score, ΔAIS score, and ΔHR but negatively correlated with SpO2. AIS score was positively correlated with SAS score. After logistic regression analysis was adjusted for HR, SpO2, ΔAIS and ΔHR, SAS score (OR=1.446, 95% CI 1.200-1.744, p<0.001), AIS score (OR=1.216, 95% CI 1.033-1.432) and ΔSAS score (OR=1.158, 95% CI 1.012-1.327) were identified as independent risk factors for AMS. Conclusion The present study suggests that anxiety is a risk factor for AMS among young Chinese men, and poor sleep quality may partially mediate the association.
Collapse
Affiliation(s)
- Xugang Tang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
- Department of Cardiology, The No. 37 Hospital of Chinese PLA, Ya’an, Sichuan, People’s Republic of China
| | - Xiuchuan Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Qian Xin
- Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Shuang Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
8
|
Yan C, Ma J, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Sun Y, Zhang Q. Evaluation of Myocardial Microcirculation in Rats under a High-Altitude Hypoxic Environment by Computed Tomography Myocardial Perfusion Imaging. Int Heart J 2023; 64:928-934. [PMID: 37778996 DOI: 10.1536/ihj.23-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This study aims to examine the changes in myocardial microcirculation in rats in a high-altitude hypoxic environment via computed tomography (CT) myocardial perfusion imaging technology. Rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. At 28 weeks of age, both groups underwent CT myocardial perfusion scanning, and the following myocardial perfusion parameters were measured: time to peak (TTP), mean transit time (MTT), blood flow (BF), and blood volume (BV). Following the scan, the rats were sacrificed, the cardiac index and right ventricular hypertrophy index were obtained, and hematoxylin-eosin (HE) staining was utilized to observe the pathological changes in the myocardium. In the group of rats that are subject to a high-altitude hypoxic environment for 24 weeks (the high-altitude group), the TTP and MTT values were increased (P < 0.05), the BF and BV values were lower (P < 0.05), the right heart mass was higher (P < 0.05) than that in the low-altitude group. As shown by the pathological results of HE staining, the gap between cardiomyocytes in the high-altitude group was widened, the arrangement of cardiomyocytes was irregular, and the cells were filled with a few fat vacuoles. The myocardial microcirculation is altered in a high-altitude hypoxic environment. In particular, the myocardium is in a state of inadequate perfusion, the BF in the myocardium slows down, and the right heart displays compensatory hypertrophy.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
- Department of Radiology, Jining No.1 People's Hospital
| | - Jinfeng Ma
- Suzhou Medical College of Soochow University
- Department of Hematology, Jining No.1 People's Hospital
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yanqiu Sun
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital
| |
Collapse
|