1
|
Arévalo-Martinez M, Ede J, van der Have O, Ritsvall O, Zetterberg FR, Nilsson UJ, Leffler H, Holmberg J, Albinsson S. Myocardin related transcription factor and galectin-3 drive lipid accumulation in human blood vessels. Vascul Pharmacol 2024; 156:107383. [PMID: 38830455 DOI: 10.1016/j.vph.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Diabetes and hypertension are important risk factors for vascular disease, including atherosclerosis. A driving factor in this process is lipid accumulation in smooth muscle cells of the vascular wall. The glucose- and mechano-sensitive transcriptional coactivator, myocardin-related transcription factor A (MRTF-A/MKL1) can promote lipid accumulation in cultured human smooth muscle cells and contribute to the formation of smooth muscle-derived foam cells. The purpose of this study was to determine if intact human blood vessels ex vivo can be used to evaluate lipid accumulation in the vascular wall, and if this process is dependent on MRTF and/or galectin-3/LGALS3. Galectin-3 is an early marker of smooth muscle transdifferentiation and a potential mediator for foam cell formation and atherosclerosis. APPROACH AND RESULTS Human mammary arteries and saphenous veins were exposed to altered cholesterol and glucose levels in an organ culture model. Accumulation of lipids, quantified by Oil Red O, was increased by cholesterol loading and elevated glucose concentrations. Pharmacological inhibition of MRTF with CCG-203971 decreased lipid accumulation, whereas adenoviral-mediated overexpression of MRTF-A had the opposite effect. Cholesterol-induced expression of galectin-3 was decreased after inhibition of MRTF. Importantly, pharmacological inhibition of galectin-3 with GB1107 reduced lipid accumulation in the vascular wall after cholesterol loading. CONCLUSION Ex vivo organ culture of human arteries and veins can be used to evaluate lipid accumulation in the intact vascular wall, as well as adenoviral transduction and pharmacological inhibition. Although MRTF and galectin-3 may have beneficial, anti-inflammatory effects under certain circumstances, our results, which demonstrate a significant decrease in lipid accumulation, support further evaluation of MRTF- and galectin-3-inhibitors for therapeutic intervention against atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Marycarmen Arévalo-Martinez
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Jacob Ede
- Department of Clinical Sciences Lund, Department of Cardiothoracic Surgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Oscar van der Have
- Vessel Wall Biology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Olivia Ritsvall
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Lund, Sweden
| | - Ulf J Nilsson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Lund, Sweden; Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Johan Holmberg
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Sebastian Albinsson
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden.
| |
Collapse
|
2
|
Bankell E, Liu L, van der Horst J, Rippe C, Jepps TA, Nilsson BO, Swärd K. Suppression of smooth muscle cell inflammation by myocardin-related transcription factors involves inactivation of TANK-binding kinase 1. Sci Rep 2024; 14:13321. [PMID: 38858497 PMCID: PMC11164896 DOI: 10.1038/s41598-024-63901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) suppress production of pro-inflammatory cytokines and chemokines in human smooth muscle cells (SMCs) through sequestration of RelA in the NF-κB complex, but additional mechanisms are likely involved. The cGAS-STING pathway is activated by double-stranded DNA in the cytosolic compartment and acts through TANK-binding kinase 1 (TBK1) to spark inflammation. The present study tested if MRTFs suppress inflammation also by targeting cGAS-STING signaling. Interrogation of a transcriptomic dataset where myocardin was overexpressed using a panel of 56 cGAS-STING cytokines showed the panel to be repressed. Moreover, MYOCD, MRTFA, and SRF associated negatively with the panel in human arteries. RT-qPCR in human bronchial SMCs showed that all MRTFs reduced pro-inflammatory cytokines on the panel. MRTFs diminished phosphorylation of TBK1, while STING phosphorylation was marginally affected. The TBK1 inhibitor amlexanox, but not the STING inhibitor H-151, reduced the anti-inflammatory effect of MRTF-A. Co-immunoprecipitation and proximity ligation assays supported binding between MRTF-A and TBK1 in SMCs. MRTFs thus appear to suppress cellular inflammation in part by acting on the kinase TBK1. This may defend SMCs against pro-inflammatory insults in disease.
Collapse
Affiliation(s)
- Elisabeth Bankell
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Li Liu
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
- Department of Urology, Qingyuan Hospital Affiliated to Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Catarina Rippe
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Bengt-Olof Nilsson
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Karl Swärd
- Cellular Biomechanics/Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
3
|
Daoud F, Arévalo Martínez M, Holst J, Holmberg J, Albinsson S, Swärd K. Role of smooth muscle YAP and TAZ in protection against phenotypic modulation, inflammation, and aneurysm development. Biochem Pharmacol 2022; 206:115307. [DOI: 10.1016/j.bcp.2022.115307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
4
|
SRF Rearrangements in Soft Tissue Tumors with Muscle Differentiation. Biomolecules 2022; 12:biom12111678. [DOI: 10.3390/biom12111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The Serum Response Factor (SRF) is a transcription factor that regulates the expression of a wide set of genes involved in cell proliferation, migration, cytoskeletal organization and myogenesis. Accumulating evidence suggests that SRF may play a role in carcinogenesis and tumor progression in various neoplasms, where it is often involved in different fusion events. Here we investigated SRF rearrangements in soft tissue tumors, along with a gene expression profile analysis to gain insight into the oncogenic mechanism driven by SRF fusion. Whole transcriptome analysis of cell lines transiently overexpressing the SRF::E2F1 chimeric transcript uncovered the specific gene expression profile driven by the aberrant gene fusion, including overexpression of SRF-dependent target genes and of signatures related to myogenic commitment, inflammation and immune activation. This result was confirmed by the analysis of two cases of myoepitheliomas harboring SRF::E2F1 fusion with respect to EWSR1-fusion positive tumors. The recognition of the specific gene signature driven by SRF rearrangement in soft tissue tumors could aid the molecular classification of this rare tumor entity and support therapeutic decisions.
Collapse
|
5
|
Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, Guo Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 2022; 132:e158309. [PMID: 36066968 PMCID: PMC9621131 DOI: 10.1172/jci158309] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/01/2022] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Huilun Wang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Science Center–Shreveport, Shreveport, Louisiana, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|
7
|
Gao X, Zhao D, Han J, Zhang Z, Wang Z. Identification of microRNA-mRNA-TF regulatory networks in periodontitis by bioinformatics analysis. BMC Oral Health 2022; 22:118. [PMID: 35397550 PMCID: PMC8994180 DOI: 10.1186/s12903-022-02150-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/24/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Periodontitis is a complex infectious disease with various causes and contributing factors. The aim of this study was to identify key genes, microRNAs (miRNAs) and transcription factors (TFs) and construct a miRNA-mRNA-TF regulatory networks to investigate the underlying molecular mechanism in periodontitis. METHODS The GSE54710 miRNA microarray dataset and the gene expression microarray dataset GSE16134 were downloaded from the Gene Expression Omnibus database. The differentially expressed miRNAs (DEMis) and mRNAs (DEMs) were screened using the "limma" package in R. The intersection of the target genes of candidate DEMis and DEMs were considered significant DEMs in the regulatory network. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. Subsequently, DEMs were uploaded to the STRING database, a protein-protein interaction (PPI) network was established, and the cytoHubba and MCODE plugins were used to screen out key hub mRNAs and significant modules. Ultimately, to investigate the regulatory network underlying periodontitis, a global triple network including miRNAs, mRNAs, and TFs was constructed using Cytoscape software. RESULTS 8 DEMis and 121 DEMs were found between the periodontal and control groups. GO analysis showed that mRNAs were most significantly enriched in positive regulation of the cell cycle, and KEGG pathway analysis showed that mRNAs in the regulatory network were mainly involved in the IL-17 signalling pathway. A PPI network was constructed including 81 nodes and 414 edges. Furthermore, 12 hub genes ranked by the top 10% genes with high degree connectivity and five TFs, including SRF, CNOT4, SIX6, SRRM3, NELFA, and ONECUT3, were identified and might play crucial roles in the molecular pathogenesis of periodontitis. Additionally, a miRNA-mRNA-TF coregulatory network was established. CONCLUSION In this study, we performed an integrated analysis based on public databases to identify specific TFs, miRNAs, and mRNAs that may play a pivotal role in periodontitis. On this basis, a TF-miRNA-mRNA network was established to provide a comprehensive perspective of the regulatory mechanism networks of periodontitis.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongti Nan Lu, Chaoyang District, Beijing, 100020 China
| | - Dong Zhao
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongti Nan Lu, Chaoyang District, Beijing, 100020 China
| | - Jing Han
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongti Nan Lu, Chaoyang District, Beijing, 100020 China
| | - Zheng Zhang
- Department of Periodontology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Bei Lu, Heping District, Tianjin, 300041 China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongti Nan Lu, Chaoyang District, Beijing, 100020 China
| |
Collapse
|