1
|
Ziemniczak HM, Conceição LMA, Godoy AC, Neu DH, Rodrigues AT, de Campos CM, Acunha RMG, Gandra JR, Saturnino KC, de Pádua Pereira U, Honorato CA. Probiotic-based adsorbent mitigates aflatoxin B1 toxicity in Piaractus mesopotamicus: assessing well-being via changes in tissue architecture and digestive enzyme activity. Vet Res Commun 2025; 49:94. [PMID: 39878892 DOI: 10.1007/s11259-025-10663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Aflatoxin is a mycotoxin produced by fungi of the genus Aspergillus that is present in various foods. Probiotics are well-established products in aquaculture, and due to their effective contribution to the intestine, they can be used as an aflatoxin adsorbent. This study evaluated the effects of aflatoxin B1 (AFB1) on enzymatic activity and intestinal function in Piaractus mesopotamicus (pacu) fingerlings fed diets containing a probiotic-based adsorbent (PBA). Seventy-two fish with an average weight of 12 ± 1.30 g were used in the study. The experiment was conducted over 15 days using a completely randomized design with six diet treatments (AFB1 per kg of formulated diet) and two replicates. These treatments were: control without AFB1; 25.0 µg of AFB1; 400.0 µg of AFB1; control diet without AFB1 + PBA; 25.0 µg of AFB1 + PBA; and 400.0 µg of AFB1 + PBA. After the experimental period, the digestive enzymes protease, amylase, and lipase from the stomach, pyloric caeca, and intestine were quantified. The height and width of the intestinal villi, pyloric caeca, and stomach wall were measured. Fish fed the 400.0 µg of AFB1 diet showed reduced feed consumption, even though they ingested higher amounts of AFB1 compared to those fed the other experimental diets. The best zootechnical performance parameters were observed in fish fed the control diet without AFB1 + PBA. Changes (p < 0.05) were observed in the amount of protease in the stomach, pyloric caeca, and intestine; in the amount of amylase in the intestine; and the amount of lipase in the pyloric caeca and intestine. Changes were observed (p < 0.05) in the length of the stomach wall and the anterior and posterior intestines. Changes in the width of the stomach and anterior intestine walls were observed as a result of diet. Our results suggest that the use of probiotics as an aflatoxin adsorbent in pacu diets is beneficial from a physiological perspective and may also enhance growth.
Collapse
Affiliation(s)
- Henrique M Ziemniczak
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | - Leticia Maria Albuquerque Conceição
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | - Antonio Cesar Godoy
- Departamento de Pesquisa em Recursos Naturais, Instituto Federal de Educação, Ciência e Tecnologia do Paraná, Avenida Cívica, 475, Assis Chateaubriand, Paraná, 85935-000, Argentina.
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil.
| | - Dacley Hertes Neu
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | | | - Cristiane Meldau de Campos
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil
| | - Rubia Mara Gomes Acunha
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Klaus C Saturnino
- Universidade Federal de Jataí, BR 364, km 195, Setor Parque Industrial nº 3800, Jataí, GO, Brasil
| | - Ulisses de Pádua Pereira
- Universidade Federal de Jataí, BR 364, km 195, Setor Parque Industrial nº 3800, Jataí, GO, Brasil
| | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| |
Collapse
|
2
|
Ettayri K, Zhang H, Long L, Yang H, Hussain M, Wong MS, Wang K, Qian J. Enhancing resolution in DNA staining dye-based label-free visual fluorescence aptasensor: Strategy for eliminating non-specific binding-induced signal interference. Talanta 2025; 282:127034. [PMID: 39406098 DOI: 10.1016/j.talanta.2024.127034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
By optimizing the quenching capabilities of diverse two-dimensional (2D) nanomaterials such as graphene oxide (GO), Ti3C2 MXene, and MoS2, we have pioneered a label-free fluorescence aptasensor with near-zero background signal, enabling highly sensitive detection of aflatoxin B1 (AFB1). This aptasensor was equipped with a newly synthesized dicationic fluorophore, VLM, which exhibited binding-induced turn-on fluorescence properties. Among the evaluated 2D nanosheets, MoS2 nanosheets were found to exhibit exceptional quenching efficiency for the background emission of the cDNA/VLM complex (cDNA was the complementary DNA of the aptamer), further enhancing the overall performance of our aptasensor. Upon exposure to AFB1, the aptamers underwent conformational switching and target binding, leading to the formation of aptamer/AFB1 complex. Additionally, the aptamers bound complementarily to cDNA, creating aptamer-cDNA duplexes that interacted with VLM, resulting in a robust fluorescence signal. Despite the presence of a weakly fluorescent cDNA/VLM background, this fluorescence could be effectively quenched by the addition of MoS2 nanosheets. Consequently, the label-free fluorescence aptasensor exhibited excellent linearity with AFB1 concentration within 2-3000 ng mL-1, achieving a limit of detection (LOD) of 0.006 ng mL-1. Remarkably, the visual fluorescence captured by a smartphone camera can be processed using extracted grayscale values, consistently revealing a linear relationship with the AFB1 concentration within 2-3000 ng mL-1, with a LOD of 0.197 ng mL-1. This aptasensor demonstrated exceptional sensitivity and a remarkably rapid sample-to-answer detection time of 74 min, showcasing its immense potential as a straightforward, sensitive, and visually intuitive method for rapid AFB1 detection with enhanced resolution.
Collapse
Affiliation(s)
- Kawtar Ettayri
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hailong Zhang
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiyuan Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mustafa Hussain
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Man Shing Wong
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
3
|
Ziarati M, Imani A, Ghafarifarsani H, Bhatt D. A Brief Review on Aflatoxicosis in Aquaculture With a Focus on Fish. AQUACULTURE NUTRITION 2024; 2024:3130230. [PMID: 39713178 PMCID: PMC11663045 DOI: 10.1155/anu/3130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/09/2024] [Indexed: 12/24/2024]
Abstract
Feed quality is among the most determinative criteria for aquaculture success. Along with feed ingredient quality and its production process, feed storage conditions would also affect feed quality, especially in terms of adventitious toxins. Mycotoxins are frequent food and feed contaminants and are considered important health threats to both human and animal health. In this context, the effects of mycotoxins on aquatic animals were reviewed with an emphasis on aflatoxin B1 (AFB1), which is obviously reported in aquafeed. Severe tissue damage, increased susceptibility to infectious diseases, compromised immune system function, and increasing unknown death risks are among the most frequent symptoms of aflatoxicosis in aquatic animals. The lowest observable effect level for AFB1 has also been documented for different fish species. Considering the importance of such fungal toxins on the economic viability of aquaculture enterprises, it is recommended that further knowledge be obtained concerning the safe levels of AFB1 in terms of fish health and final product safety to human consumers.
Collapse
Affiliation(s)
- Mina Ziarati
- Department of Microbiology, National Center for Survey and Disease Diagnosis, Iranian Veterinary Organization (IVO), Bushehr, Iran
| | - Ahmad Imani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Hamed Ghafarifarsani
- Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord, Iran
| | - Deepa Bhatt
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Szabó RT, Kovács-Weber M, Balogh KM, Mézes M, Kovács B. Effect of aflatoxin B1 and sterigmatocystin on DNA repair genes in common carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107076. [PMID: 39277992 DOI: 10.1016/j.aquatox.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate the short-time (24 h) effect of aflatoxin B1 (AFB1) and sterigmatocystin (STC) on the expression of hsp70, p53, gadd45, and ogg1 genes in common carp hepatopancreas. Our results showed that aflatoxin B1 and sterigmatocystin can stimulate the expression of DNA repair genes, mainly by hour 24. This significant finding contributes to our understanding of the short-term effects of these mycotoxins on ogg1 genes in common carp hepatopancreas. One-year-old common carp juveniles were randomly distributed into five groups (Control, AFB1 0.4 mg kg-1 feed, STC1 1 mg kg-1 feed, STC2 2 mg kg-1 feed, and STC3 3 mg kg-1 feed). Hepatopancreas samples were collected three times (8, 16, and 24 h) in each group. No significant ogg1 and p53 expression changes were observed at 8 and 16 h after exposure. All measured genes were upregulated by the 24th hour in aflatoxin and STC3 groups. An increase in hsp70 gene expression was detected in all groups and all sampling. A significant decrease in gadd45aa gene expression was observed in the aflatoxin B1 group at hour 8. At hour 16, there was no significant change, while at hour 24, all treated groups were significantly different from the control. In summary, our results suggest that aflatoxin B1 and sterigmatocystin can stimulate the expression of DNA repair genes, mainly by hour 24. Further investigations are needed to get information about DNA damage parallel to the DNA repair mechanisms.
Collapse
Affiliation(s)
- Rubina Tünde Szabó
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mária Kovács-Weber
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary.
| | - Krisztián Milán Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
5
|
Barany A, Fuentes J, Valderrama V, Broz-Ruiz A, Martínez-Rodríguez G, Mancera JM. Oral cortisol and dexamethasone intake: Differential physiology and transcriptional responses in the marine juvenile Sparus aurata. Gen Comp Endocrinol 2023; 344:114371. [PMID: 37640145 DOI: 10.1016/j.ygcen.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This study approached the long-term oral administration of cortisol (F) and dexamethasone (DEX), two synthetic glucocorticoids, compared to a control group (CT) in the juveniles of a marine teleost, the gilthead seabream (Sparus aurata). Physiologically, DEX treatment impaired growth, which appears to be linked to carbohydrate allocation in muscle and liver, hepatic triglycerides depletion, and reduced hematocrit. Hypophyseal gh mRNA expression was 2-fold higher in DEX than in CT or F groups. Similarly, hypothalamic trh and hypophyseal pomcb followed this pattern. Plasma cortisol levels were significantly lower in DEX than in CT, while F presented intermediate levels. In the posterior intestine, measured short circuit-current (Isc) was more anion absorptive in CT and F compared to the DEX group, whereas Isc remained unaffected in the anterior intestine. The derived transepithelial electric resistance (TEER) significantly differed between intestinal regions in the DEX group. These results provide new insights to understand better potential targeted biomarkers indicative of the differential glucocorticoid or mineralocorticoid-receptors activation in fish.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Morrill Science Center, University of Massachusetts, 01003 Amherst, MA, USA; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain.
| | - J Fuentes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - V Valderrama
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - A Broz-Ruiz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Spanish National Research Council (ICMAN-CSIC), E-11510 Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
6
|
Zhang Z, Zhang Q, Li M, Xu J, Wang J, Li M, Wei L, Lv Q, Chen X, Wang Y, Liu Y. SeMet attenuates AFB1-induced intestinal injury in rabbits by activating the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113640. [PMID: 35597141 DOI: 10.1016/j.ecoenv.2022.113640] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the role of selenomethionine (SeMet) in alleviating AFB1 induced intestinal injury by inhibiting intestinal oxidative stress. Forty 35-day-old rabbits were divided randomly into 4 groups (control group, AFB1 group, 0.2 mg/kg Se + AFB1 group, 0.4 mg/kg Se + AFB1 group). From the first day of the experiment, the two treatment groups were fed 0.2 mg/kg SeMet or 0.4 mg/kg SeMet daily for 21 days. On the 17th day, all rabbits in the model group and the two treatment groups were given intragastric AFB1 daily for 5 days. The ADG, ADFI and FCR of the rabbits were examined. Rabbit jejunum tissue was collected for hematoxylin- eosin staining (HE), PCNA detection, immunofluorescence and WB. Intestinal tissue IL-1β, IL-6 and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). The results showed that the production performance was decreased, the levels of ROS and MDA were increased in intestinal tissues, the activity of antioxidant enzymes was decreased and the expression levels of Nrf2 and HO-1 were decreased in AFB1-exposed rabbits. In addition, AFB1 induces an inflammatory response in the jejunum and promotes the expression of TNF-α, IL-6 and IL-1β. SeMet pretreatment significantly improved the performance of the rabbits, alleviated intestinal oxidative stress and the inflammatory response. Therefore, we confirmed that SeMet protects against AFB1 induced oxidative damage and improves productivity in rabbits by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jingyi Xu
- College of Animal Science and Technology, China
| | | | - Mengyun Li
- College of Animal Science and Technology, China
| | - Lan Wei
- College of Animal Science and Technology, China
| | - Qiongxia Lv
- College of Animal Science and Technology, China
| | | | - Yuqin Wang
- College of Animal Science and Technology, China
| | - Yumei Liu
- College of Animal Science and Technology, China.
| |
Collapse
|
7
|
Does Bentonite Cause Cytotoxic and Whole-Transcriptomic Adverse Effects in Enterocytes When Used to Reduce Aflatoxin B1 Exposure? Toxins (Basel) 2022; 14:toxins14070435. [PMID: 35878173 PMCID: PMC9322703 DOI: 10.3390/toxins14070435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a major food safety concern, threatening the health of humans and animals. Bentonite (BEN) is an aluminosilicate clay used as a feed additive to reduce AFB1 presence in contaminated feedstuff. So far, few studies have characterized BEN toxicity and efficacy in vitro. In this study, cytotoxicity (WST-1 test), the effects on cell permeability (trans-epithelial electrical resistance and lucifer yellow dye incorporation), and transcriptional changes (RNA-seq) caused by BEN, AFB1 and their combination (AFB1 + BEN) were investigated in Caco-2 cells. Up to 0.1 mg/mL, BEN did not affect cell viability and permeability, but it reduced AFB1 cytotoxicity; however, at higher concentrations, BEN was cytotoxic. As to RNA-seq, 0.1 mg/mL BEN did not show effects on cell transcriptome, confirming that the interaction between BEN and AFB1 occurs in the medium. Data from AFB1 and AFB1 + BEN suggested AFB1 provoked most of the transcriptional changes, whereas BEN was preventive. The most interesting AFB1-targeted pathways for which BEN was effective were cell integrity, xenobiotic metabolism and transporters, basal metabolism, inflammation and immune response, p53 biological network, apoptosis and carcinogenesis. To our knowledge, this is the first study assessing the in vitro toxicity and whole-transcriptomic effects of BEN, alone or in the presence of AFB1.
Collapse
|