1
|
Hu H, Xi X, Jiang B, Wang K, Wu T, Chen X, Guo Y, Zhou T, Huang X, Yu J, Gao T, Wu Y, Zheng B. RNF187 Facilitates Proliferation and Migration of Human Spermatogonial Stem Cells Through WDR77 Polyubiquitination. Cell Prolif 2025:e70042. [PMID: 40197797 DOI: 10.1111/cpr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
The E3 ubiquitin ligase RNF187, also known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 is indispensable for the proliferation and migration of GC-1 cells derived from mouse spermatogonia and GC-2 cells derived from spermatocytes. However, it remains unclear whether RNF187 plays a crucial role in the self-renewal and migration of human spermatogonial stem cells (SSCs). In this study, we observed a positive correlation between RNF187 expression and the proliferation and migration of human SSCs. Through co-immunoprecipitation and mass spectrometry analyses, we identified WD repeat-containing protein 77 (WDR77) as an interacting partner of RNF187. Specifically, RNF187 recognises the K118 site of WDR77 through lysine 48-linked polyubiquitination, subsequently mediating its degradation via the ubiquitin-proteasome system (UPS). Further studies have revealed that decreased expression of WDR77 diminishes the symmetric dimethylation at H4R3 (H4R3me2s) catalysed by its interacting protein, the arginine methyltransferase PRMT5. This, in turn, relieves the transcriptional repression of early growth response protein 1 (EGR1), a positive regulator for human SSC maintenance. In conclusion, this study has unveiled a pivotal role for RNF187 in the proliferation and migration of human SSCs. This may provide a promising strategy for addressing non-obstructive azoospermia (NOA) caused by SSC dysfunction.
Collapse
Affiliation(s)
- Haoyue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoxue Xi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xia Chen
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Tingting Gao
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Chen M, Qu H, Liang X, Huang Y, Yang Z, Lu P, Shi K, Chen P, Zhang Y, Zhou H, Xia J, Shen J. Brachyury promotes proliferation and migration of colorectal cancer cells by targeting MMP14. Cancer Cell Int 2025; 25:132. [PMID: 40197249 PMCID: PMC11977941 DOI: 10.1186/s12935-025-03726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The incidence and mortality rates of colorectal cancer (CRC) are rising, and it is the second most common cause of cancer-related deaths worldwide. Although the transcription factor, Brachyury is intricately linked with various clinical malignancies, the mechanisms by which it influences CRC cell proliferation and migration are inadequately understood. METHODS Tissue microarray was used to evaluate Brachyury expression in CRC and adjacent normal tissues. The effects of Brachyury on HCT116 and SW480 CRC cells were also examined in vitro, including using Cell Counting Kit-8, colony formation, and transwell assays, and in vivo through subcutaneous tumorigenesis assays in a nude mouse xenograft model. Chromatin immunoprecipitation was used to evaluate Brachyury binding to the MMP14 promoter and its impact on MMP14 expression. Rescue experiments were used to elucidate MMP14's role in mediating Brachyury's effect on CRC cell behavior. RESULTS Brachyury expression was significantly higher in CRC tissues than in adjacent normal tissues, and it promotes CRC oncogenesis in vitro and in vivo. Rescue experiments established MMP14 as a direct, downstream Brachyury target, affirming that MMP14 enhanced Brachyury-driven CRC cell proliferation. CONCLUSION Our findings highlight targeting the Brachyury-MMP14 axis as a potential novel approach for CRC clinical therapy.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Xiao Liang
- Department of Anesthesiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Ying Huang
- Department of Ultrasonography, The Fifth People's Hospital of Suzhou, Suzhou, 215002, China
| | - Zhengjie Yang
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Pei Lu
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Keqin Shi
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Peng Chen
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Yanjing Zhang
- Department of Orthopeadic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China.
| | - Jun Shen
- Department of Orthopeadic Surgery, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
3
|
Wang G, Xu B, Yu X, Liu M, Wu T, Gao W, Hu H, Jiang B, Wu Y, Zhou T, Chen X, Shen C. LINC01320 facilitates cell proliferation and migration of ovarian cancer via regulating PURB/DDB2/NEDD4L/TGF-β axis. Sci Rep 2024; 14:26233. [PMID: 39482389 PMCID: PMC11527871 DOI: 10.1038/s41598-024-78255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Ovarian cancer (OC) is one of the most prevalent and lethal malignancies affecting the female reproductive system, due to its tendency for metastasis and recurrence. This study identified the overexpression of LINC01320 (or long intergenic nonprotein coding RNA 1320) in tissues of ovarian cancer through the analysis of patient samples and online datasets. In vitro and in vivo experiments demonstrate that silencing of LINC01320 expression led to inhibition of proliferation and metastasis of OC cells. RNA pull-down followed by liquid chromatography tandem mass spectrometry (RNA pull-down-LC-MS/MS) revealed that LINC01320 interacted with purine-rich element binding protein B (PURB), a transcriptional repressor. Furthermore, the RNA-seq analysis identified damage-specific DNA binding protein 2 (DDB2) as a major common target of LINC01320 and PURB. Mechanistically, LINC01320 could recruit PURB to the promoter region of DDB2 to repress DDB2 transcription; thus, promoting the expression of NEDD4L and impeding the TGF-β/SMAD signaling pathway, and ultimately facilitating the progression of OC. Finally, rescue experiments confirmed the involvement of the DDB2/NEDD4L/TGF-β axis in LINC01320-mediated OC progression. In conclusion, this study unveils for the first time the pivotal function of the LINC01320/PURB/DDB2/NEDD4L/TGF-β axis and explores its prospective clinical implications in OC.
Collapse
Affiliation(s)
- Gaigai Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Bingya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Meng Liu
- Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Haoyue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China
| | - Tao Zhou
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, 226001, China.
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
4
|
Li X, Lu F, Cao M, Yao Y, Guo J, Zeng G, Qian J. The pro-tumor activity of INTS7 on lung adenocarcinoma via inhibiting immune infiltration and activating p38MAPK pathway. Sci Rep 2024; 14:25636. [PMID: 39465338 PMCID: PMC11514252 DOI: 10.1038/s41598-024-77093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common lung cancer, accounting for 19.4% of all cancer deaths. Our previous study discovered that INTS7 expression was upregulated in LUAD, while the precise mechanism by which INTS7 exerts pro-cancer effects remains unknown. In our study, shRNA was used to knockdown the expression of INTS7 in A549 cells. Cancer behaviors in vitro were determined by CCK8 and transwell assays. Xenograft mice models were constructed to detect the tumorigenesis in vivo. Immunofluorescence and toluidine blue staining were used to test the immune infiltration. Bioinformatics analysis was adopted to predict the potential signaling pathways and construct INTS7-derived genomic prognostic model. Western blot was utilized to confirm the molecular pathways. In total, downregulation of INTS7 suppressed proliferation, invasion and migration of A549 cells, as well as tumor growth. Bioinformatics and western blot analysis indicated that p38MAPK pathway participated in the regulatory mechanism of INTS7. Moreover, INTS7 expression was negatively correlated with infiltration of memory B cells and mast cells, while positively correlated with infiltration of macrophages M2. A nomogram, including INTS7-derived risk score, was used to estimate individual's survival probability. Generally, our findings provided comprehensive understanding of the molecular mechanisms about INTS7, and targeting INTS7 may represent a potential therapy for LUAD.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Feifei Lu
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Man Cao
- Department of Gastroenterology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Yiyong Yao
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Jingjing Guo
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China
| | - Gang Zeng
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China.
| | - Jinxian Qian
- Department of Respiratory and Critical Care Medicine, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Soochow, 215000, Jiangsu, P.R. China.
| |
Collapse
|
5
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Zhao C, Xu Z, Que H, Zhang K, Wang F, Tan R, Fan C. ASB1 inhibits prostate cancer progression by destabilizing CHCHD3 via K48-linked ubiquitination. Am J Cancer Res 2024; 14:3404-3418. [PMID: 39113857 PMCID: PMC11301297 DOI: 10.62347/feiz7492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Prostate cancer is a major contributor to male mortality worldwide. In this study, we revealed that Ankyrin Repeat and SOCS Box Containing 1 (ASB1) expression was significantly decreased in prostate cancer tissues, correlating strongly with poor patient prognosis. Notably, the group with low ASB1 expression exhibited an increased proportion of M2 macrophages and showed resistance to immune checkpoint inhibitors and cisplatin, but remained sensitive to androgen-receptor-targeting drug bicalutamide. Silencing ASB1 enhanced prostate cancer cell proliferation, clonogenicity, and migration, whereas its overexpression exerted the opposite effects. Through quantitative mass spectrometry interactome analysis, we identified 37 novel proteins interacting with ASB1, including CHCHD3. Subsequent experiments including co-immunoprecipitation, cycloheximide treatment, and ubiquitination assays, revealed that ASB1 interacts with CHCHD3, promoting its degradation via K48-linked ubiquitination. Cell rescue experiments further demonstrated that ASB1 inhibits prostate cancer cell through the CHCHD3/reactive oxygen species (ROS) pathway. Taken together, our study indicated that ASB1 functions as a tumor suppressor by inhibiting CHCHD3/ROS signaling, thereby playing a vital part in prevention of prostate cancer proliferation, clonogenicity, and migration.
Collapse
Affiliation(s)
- Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Zhen Xu
- Department of Urology, The Affiliated Taizhou People’s Hospital of Nanjing Medical UniversityTaizhou 225300, Jiangsu, China
| | - Hongliang Que
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| |
Collapse
|
7
|
Wu F, Xu J, Jin X, Zhu Y, Gao W, Liu M, Zhang Y, Qian W, Huang X, Zhao D, Feng G, Hou S, Xi X. TRIM8 promotes ovarian cancer proliferation and migration by targeting VDAC2 for ubiquitination and degradation. Cancer Med 2024; 13:e7396. [PMID: 38881325 PMCID: PMC11180974 DOI: 10.1002/cam4.7396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Ovarian cancer is a common gynecological tumor with high malignant potential and poor prognosis. TRIM8, is involved in the development of various tumors, but its precise regulatory role in ovarian cancer is still unknown. AIMS The aim of this study was to explore the specific mechanism by which TRIM8 regulates ovarian cancer. MATERIALS AND METHODS We used bioinformatics analysis to screen for high expression of TRIM8 in ovarian cancer. The expression of TRIM8 in healthy and cancerous ovarian tissues was assessed by immunofluorescence. TRIM8 was silenced or overexpressed in ovarian cancer cell lines, with cell proliferation and migration evaluated by CCK8, transwell and clonal formation assays. The effect of TRIM8 on ovarian cancer cells in vivo was assessed by subcutaneous tumor formation experiments in nude mice. The potential interacting protein VDAC2 was identified by mass spectrometry. The mechanism underlying TRIM8 regulation of VDAC2 was evaluated by co-immunoprecipitation and western blotting. RESULTS TRIM8 was overexpressed in ovarian cancer. TRIM8 promoted the proliferation and migration of ovarian cancer cells in vitro and the growth of subcutaneous tumors in mice in vivo. TRIM8 interacted with VDAC2, weakened the stability of the protein, and promoted its polyubiquitination and subsequent degradation. Knockdown of VDAC2 increased the resistance of ovarian cancer cells to iron death, whereas overexpression of VDAC2 attenuated ovarian cancer progression induced by TRIM8 overexpression. DISCUSSION TRIM8 promotes ovarian cancer proliferation and migration by targeting VDAC2 for ubiquitination and degradation, these finding may provide new targets for the treatment of ovarian cancer. CONCLUSION TRIM8 degraded VDAC2 through the ubiquitination pathway, increased the resistance of ovarian cancer cells to iron death, and promoted the proliferation and migration of ovarian cancer.
Collapse
Affiliation(s)
- Fei Wu
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Jiaqi Xu
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Xin Jin
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Yue Zhu
- Department of Breast and Thyroid SurgeryThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Wenxin Gao
- Department of Histology and Embryology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Meng Liu
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Yan Zhang
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Weifeng Qian
- Department of Breast and Thyroid SurgeryThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Xiaoyan Huang
- Department of Histology and Embryology, School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Dan Zhao
- Reproductive Medicine CenterThe Fourth Affiliated Hospital of Jiangsu UniversityZhenjiangChina
- Institute of Reproductive Sciences, Jiangsu UniversityZhenjiangChina
| | - Guannan Feng
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Shunyu Hou
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Xiaoxue Xi
- Department of Obstetrics and GynecologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| |
Collapse
|
8
|
Xu BY, Yu XL, Gao WX, Gao TT, Hu HY, Wu TT, Shen C, Huang XY, Zheng B, Wu YB. RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80. Asian J Androl 2024; 26:272-281. [PMID: 38156805 PMCID: PMC11156453 DOI: 10.4103/aja202368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
RING finger 187 (RNF187), a ubiquitin-ligating (E3) enzyme, plays a crucial role in the proliferation of cancer cells. However, it remains unclear whether RNF187 exhibits comparable functionality in the development of germline cells. To investigate the potential involvement of RNF187 in germ cell development, we conducted interference and overexpression assays using GC-2 cells, a mouse spermatocyte-derived cell line. Our findings reveal that the interaction between RNF187 and histone H3 increases the viability, proliferation, and migratory capacity of GC-2 cells. Moreover, we provide evidence demonstrating that RNF187 interacts with H3 and mediates the ubiquitination of H3 at lysine 57 (K57) or lysine 80 (K80), directly or indirectly resulting in increased cellular transcription. This is a study to report the role of RNF187 in maintaining the development of GC-2 cells by mediating histone H3 ubiquitination, thus highlighting the involvement of the K57 and K80 residues of H3 in the epistatic regulation of gene transcription. These discoveries provide a new theoretical foundation for further comprehensive investigations into the function of RNF187 in the reproductive system.
Collapse
Affiliation(s)
- Bing-Ya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Xiang-Ling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Wen-Xin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Ting-Ting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Hao-Yue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tian-Tian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xiao-Yan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yi-Bo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Chen-Xi G, Jin-Fu X, An-Quan H, Xiao Y, Ying-Hui W, Suo-Yuan L, Cong S, Tian-Ming Z, Jun S. Long non-coding RNA PRR7-AS1 promotes osteosarcoma progression via binding RNF2 to transcriptionally suppress MTUS1. Front Oncol 2023; 13:1227789. [PMID: 38033505 PMCID: PMC10687407 DOI: 10.3389/fonc.2023.1227789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Osteosarcoma is a common bone malignant tumor in adolescents with high mortality and poor prognosis. At present, the progress of osteosarcoma and effective treatment strategies are not clear. This study provides a new potential target for the progression and treatment of osteosarcoma. Methods The relationship between lncRNA PRR7-AS1 and osteosarcoma was analyzed using the osteosarcoma databases and clinical sample testing. Cell function assays and tumor lung metastasis were employed to study the effects of PRR7-AS1 on tumorigenesis in vivo and in vitro. Potential downstream RNF2 of PRR7-AS1 was identified and explored using RNA pulldown and RIP. The GTRD and KnockTF database were used to predict the downstream target gene, MTUS1, and ChIP-qPCR experiments were used to verify the working mechanismy. Rescue experiments were utilized to confirm the role of MTUS1 in the pathway. Results Deep mining of osteosarcoma databases combined with clinical sample testing revealed a positive correlation between lncRNA PRR7-AS1 and osteosarcoma progression. Knockdown of PRR7-AS1 inhibited osteosarcoma cell proliferation and metastasis in vitro and in vivo. Mechanistically, RNA pulldown and RIP revealed that PRR7-AS1 may bind RNF2 to play a cancer-promoting role. ChIP-qPCR experiments were utilized to validate the working mechanism of the downstream target gene MTUS1. RNF2 inhibited the transcription of MTUS1 through histone H2A lysine 119 monoubiquitin. Rescue experiments confirmed MTUS1 as a downstream direct target of PRR7-AS1 and RNF2. Discussion We identified lncRNA PRR7-AS1 as an important oncogene in osteosarcoma progression, indicating that it may be a potential target for diagnosis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Gu Chen-Xi
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xu Jin-Fu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Huang An-Quan
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yu Xiao
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wu Ying-Hui
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Li Suo-Yuan
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shen Cong
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zou Tian-Ming
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shen Jun
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
10
|
Yu X, Xu B, Gao T, Fu X, Jiang B, Zhou N, Gao W, Wu T, Shen C, Huang X, Wu Y, Zheng B. E3 ubiquitin ligase RNF187 promotes growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. FASEB J 2023; 37:e23217. [PMID: 37738023 DOI: 10.1096/fj.202301120r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Ubiquitination is the most common post-translational modification and is essential for various cellular regulatory processes. RNF187, which is known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 can promote the proliferation and migration of various tumor cells. However, whether it has a similar role in regulating spermatogonia is not clear. This study explored the role and molecular mechanism of RNF187 in a mouse spermatogonia cell line (GC-1). We found that RNF187 knockdown reduced the proliferation and migration of GC-1 cells and promoted their apoptosis. RNF187 overexpression significantly increased the proliferation and migration of GC-1 cells. In addition, we identified Keratin36/Keratin84 (KRT36/KRT84) as interactors with RNF187 by co-immunoprecipitation and mass spectrometry analyses. RNF187 promoted GC-1 cell growth by degrading KRT36/KRT84 via lysine 48-linked polyubiquitination. Subsequently, we found that KRT36 or KRT84 overexpression significantly attenuated proliferation and migration of RNF187-overexpressing GC-1 cells. In summary, our study explored the involvement of RNF187 in regulating the growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. This may provide a promising new strategy for treating infertility caused by abnormal spermatogonia development.
Collapse
Affiliation(s)
- Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bingya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tingting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xu Fu
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Nianchao Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
11
|
Liu Y, Xu R, Xu J, Wu T, Zhang X. BAG3 regulates bone marrow mesenchymal stem cell proliferation by targeting INTS7. PeerJ 2023; 11:e15828. [PMID: 37576499 PMCID: PMC10422954 DOI: 10.7717/peerj.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background BAG3 is an essential regulator of cell survival and has been investigated in the context of heart disease and cancer. Our previous study used immunoprecipitation-liquid chromatography-tandem mass spectrometry to show that BAG3 might directly interact with INTS7 and regulate bone marrow mesenchymal stem cell (BMMSCs) proliferation. However, whether BAG3 bound INTS7 directly and how it regulated BMMSCs expansion was unclear. Methods BAG3 expression was detected by quantitative real-time PCR in BMMSCs after siRNA-mediated BAG3 knockdown. BMMSC proliferation was determined using the CCK-8 and colony formation assays. The transwell migration, flow cytometry and TUNEL assays were performed to measure BMMSC migration, cell cycle and apoptosis, respectively. Moreover, co-immunoprecipitation, protein half-life assay and western blotting analyses were used to determine the regulatory mechanism underlying the BAG3-mediated increase in BMMSC proliferation. Results The results showed that knocking down BAG3 in BMMSCs markedly decreased their proliferative activity, colony formation and migratory capacity, and induced cell apoptosis as well as cell cycle arrest. Meanwhile, overexpression of BAG3 had the opposite effect. Bioinformatics and BAG3-INTS7 co-immunoprecipitation analyses revealed that BAG3 directly interacted with INTS7. Moreover, the downregulation of BAG3 inhibited the expression of INTS7 and promoted its ubiquitination. We also observed that BAG3 knockdown increased the levels of reactive oxygen species and the extent of DNA damage in BMMSCs. Notably, the upregulation of INTS7 or the addition of an antioxidant scavenger could rescue the BMMSC phenotype induced by BAG3 downregulation. Conclusions BAG3 directly interacts with INTS7 and promotes BMMSC expansion by reducing oxidative stress.
Collapse
Affiliation(s)
- Yubo Liu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Renjie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangxin Zhang
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Wu L, Li S, Xu J, Shen C, Qian Q. AGAP2-AS1/BRD7/c-Myc signaling axis promotes skin cutaneous melanoma progression. Am J Transl Res 2023; 15:350-362. [PMID: 36777828 PMCID: PMC9908487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE To examine the effects and mechanisms of AGAP2 Antisense RNA 1 (AGAP2-AS1) in progression of skin cutaneous melanoma (SKCM). METHODS AGAP2-AS1 expression and SKCM survival outcomes were assessed using bioinformatics analysis. In vitro and in vivo assays, including cell proliferation, colony formation, migration, and tumor formation assays, were performed to detect AGAP2-AS1 oncogenic effects in SKCM. RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation were used to evaluate the mechanism of AGAP2-AS1 in SKCM progression. RESULTS AGAP2-AS1 was upregulated in human SKCM tissues and cells and predicted a worse prognosis. AGAP2-AS1 silencing in two SKCM cell lines inhibited cell proliferation, as well as colony formation and migration both in vitro and in vivo. The RNA pull-down assay and RIP analysis results indicated that AGAP2-AS1 interacted with bromodomain containing 7 (BRD7). AGAP2-AS1 knockdown attenuated the BRD7 and c-Myc interaction, which reduced c-Myc expression. The altered phenotypes found in AGAP2-AS1- and BRD7-deficient cells were rescued by overexpression of c-Myc. CONCLUSIONS AGAP2-AS1 participated in oncogenesis in SKCM via the BRD7/c-Myc signaling pathway. These results suggest a molecular mechanism for AGAP2-AS1 in the carcinogenesis of SKCM.
Collapse
Affiliation(s)
- Lei Wu
- Department of Dermatology, First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Shenyi Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan UniversityWuxi 214062, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China,State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Qihong Qian
- Department of Dermatology, First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
13
|
Zhou JY, Liu JY, Tao Y, Chen C, Liu SL. LINC01526 Promotes Proliferation and Metastasis of Gastric Cancer by Interacting with TARBP2 to Induce GNG7 mRNA Decay. Cancers (Basel) 2022; 14:cancers14194940. [PMID: 36230863 PMCID: PMC9562272 DOI: 10.3390/cancers14194940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Many long noncoding RNAs play an important role in gastric cancer progression. In this study, we focused on LINC01526. Through expression and functional analyses, we obtained a preliminary understanding of the pro-cancer role of LINC01526 in gastric cancer. Furthermore, RNA pull-down and RNA immunoprecipitation chip assays demonstrated that LINC01526 interacts with TARBP2, an RNA-binding protein controlling mRNA stability. Moreover, TARBP2 could bind and destabilize GNG7 transcripts. Finally, the rescue assay disclosed that LINC01526 promoted gastric cancer progression by interacting with TARBP2, leading to the degradation of GNG7 mRNA. Abstract Gastric cancer is the most common malignancy of the human digestive system. Long noncoding RNAs (lncRNAs) influence the occurrence and development of gastric cancer in multiple ways. However, the function and mechanism of LINC01526 in gastric cancer remain unknown. Herein, we investigated the function of LINC01526 with respect to the malignant progression of gastric cancer. We found that LINC01526 was upregulated in gastric cancer cells and tissues. The function experiments in vitro and the Xenograft mouse model in vivo proved that LINC01526 could promote gastric cancer cell proliferation and migration. Furthermore, LINC01526 interacted with TAR (HIV-1) RNA-binding protein 2 (TARBP2) and decreased the mRNA stability of G protein gamma 7 (GNG7) through TARBP2. Finally, the rescue assay showed that downregulating GNG7 partially rescued the cell proliferation inhibited by LINC01526 or TARBP2 silencing. In summary, LINC01526 promoted gastric cancer progression by interacting with TARBP2, which subsequently degraded GNG7 mRNA. This study not only explores the role of LINC01526 in gastric cancer, but also provides a laboratory basis for its use as a new biomarker for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Correspondence: (J.-Y.Z.); (S.-L.L.)
| | - Jin-Yan Liu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shen-Lin Liu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Correspondence: (J.-Y.Z.); (S.-L.L.)
| |
Collapse
|
14
|
Zheng B, Liu J, Shi X, Xu J, Zhang K, Zhou H, Wu T, Huang X, Shen C, Liang Y, Zhao D, Guo Y. BMI1 governs the maintenance of mouse GC-2 cells through epigenetic repression of Foxl1 transcription. Am J Transl Res 2022; 14:3407-3418. [PMID: 35702123 PMCID: PMC9185053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies have demonstrated that B lymphoma Mo-MLV insertion region 1 (BMI1) plays an important role in male reproductive function and the regulation of spermatogonia proliferation. However, whether BMI1 exerts a similarly important function in spermatocyte development remains unclear. METHODS In this study, we investigated the role of BMI1 in spermatocyte development using a mouse spermatocyte-derived cell line (GC-2) and a Bmi1-knockout (KO) mouse model. RESULTS We demonstrated that BMI1 promoted the proliferation and inhibited the apoptosis of GC-2 cells. Mechanistically, we presented in vitro and in vivo evidence showing that BMI1 binds to the promoter region of the forkhead box L1 (Foxl1) gene, sequentially driving chromatin remodeling and gene silencing. BMI1, which functions as a classical polycomb protein, was found to direct the transcriptional repression of Foxl1 through increasing the H2AK119ub level and reducing that of H3K4me3 in the promoter region of Foxl1. Our results further indicated that the knockdown of Foxl1 expression significantly enhanced cell proliferation via activating β-catenin signaling in BMI1-deficient GC-2 cells. CONCLUSIONS Collectively, our study revealed for the first time the existence of an epigenetic mechanism involving BMI1-mediated gene silencing in GC-2 cells development and provided potential targets for the treatment of male infertility.
Collapse
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Juanjuan Liu
- Reproductive Medicine Center, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Xiaodan Shi
- Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210004, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Ke Zhang
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214122, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Dan Zhao
- Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang 212008, Jiangsu, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| |
Collapse
|
15
|
LINC00624/TEX10/NF-κB axis promotes proliferation and migration of human prostate cancer cells. Biochem Biophys Res Commun 2022; 601:1-8. [PMID: 35219000 DOI: 10.1016/j.bbrc.2022.02.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 01/01/2023]
Abstract
Prostate cancer (PCa) is a malignant epithelial tumor with a high rate of biochemical or local recurrence. Studies have suggested that LINC00624 plays an important oncogenic role in liver cancer. However, whether it exerts similar effects in PCa progression remains unknown. In this study, we explored the effects of LINC00624 on the malignant progression of PCa and sought to identify the relevant signaling pathways. The results showed that LINC00624 was highly expressed in PCa tissues and cells and was associated with poor prognosis in PCa patients. In vitro and in vivo assays further showed that LINC00624 knockdown could decrease the proliferative and migratory ability of PCa cells. Mechanistically, we found that LINC00624 and TEX10 formed a co-regulatory axis that stimulated NF-κB activity. Our data suggest that LINC00624 acts as an oncogene in PCa progression and has potential as a novel biomarker for PCa.
Collapse
|
16
|
Abstract
Bone regeneration is a central focus of maxillofacial research, especially when dealing with dental implants or critical sized wound sites. While bone has great regeneration potential, exogenous delivery of growth factors can greatly enhance the speed, duration, and quality of osseointegration, making a difference in a patient’s quality of life. Bone morphogenic protein 2 (BMP-2) is a highly potent growth factor that acts as a recruiting molecule for mesenchymal stromal cells, induces a rapid differentiation of them into osteoblasts, while also maintaining their viability. Currently, the literature data shows that the liposomal direct delivery or transfection of plasmids containing BMP-2 at the bone wound site often results in the overexpression of osteogenic markers and result in enhanced mineralization with formation of new bone matrix. We reviewed the literature on the scientific data regarding BMP-2 delivery with the help of liposomes. This may provide the ground for a future new bone regeneration strategy with real chances of reaching clinical practice.
Collapse
|