1
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
2
|
Turewicz M, Skagen C, Hartwig S, Majda S, Thedinga K, Herwig R, Binsch C, Altenhofen D, Ouwens DM, Förster PM, Wachtmeister T, Köhrer K, Stermann T, Chadt A, Lehr S, Marschall T, Thoresen GH, Al-Hasani H. Temporal phosphoproteomics reveals circuitry of phased propagation in insulin signaling. Nat Commun 2025; 16:1570. [PMID: 39939313 PMCID: PMC11821911 DOI: 10.1038/s41467-025-56335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
Insulin is a pleiotropic hormone that elicits its metabolic and mitogenic actions through numerous rapid and reversible protein phosphorylations. The temporal regulation of insulin's intracellular signaling cascade is highly complex and insufficiently understood. We conduct a time-resolved analysis of the global insulin-regulated phosphoproteome of differentiated human primary myotubes derived from satellite cells of healthy donors using high-resolution mass spectrometry. Identification and tracking of ~13,000 phosphopeptides over time reveal a highly complex and coordinated network of transient phosphorylation and dephosphorylation events that can be allocated to time-phased regulation of distinct and non-overlapping subcellular pathways. Advanced network analysis combining protein-protein-interaction (PPI) resources and investigation of donor variability in relative phosphosite occupancy over time identifies novel putative candidates in non-canonical insulin signaling and key regulatory nodes that are likely essential for signal propagation. Lastly, we find that insulin-regulated phosphorylation of the pre-catalytic spliceosome complex is associated with acute alternative splicing events in the transcriptome of human skeletal muscle. Our findings highlight the temporal relevance of protein phosphorylations and suggest that synchronized contributions of multiple signaling pathways form part of the circuitry for propagating information to insulin effector sites.
Collapse
Affiliation(s)
- Michael Turewicz
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Stephan Majda
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Kristina Thedinga
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - D Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Pia Marlene Förster
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biologisch-Medizinisches-Forschungszentrum (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Munchen-Neuherberg, Germany.
| |
Collapse
|
3
|
Donega S, Banskota N, Gupta E, Gonzalez-Freire M, Moore AZ, Ubaida-Mohien C, Munk R, Zukley L, Piao Y, Bergeron C, Bergeron J, Bektas A, Zampino M, Stagg C, Indig F, Hartnell LM, Kaileh M, Fishbein K, Spencer RG, Gorospe M, De S, Egan JM, Sen R, Ferrucci L. Skeletal Muscle mRNA Splicing Variants Association With Four Different Fitness and Energetic Measures in the GESTALT Study. J Cachexia Sarcopenia Muscle 2025; 16:e13603. [PMID: 39621510 DOI: 10.1002/jcsm.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Physical activity is essential for maintaining muscle mitochondrial function and aerobic capacity. The molecular mechanisms underlying such protective effects are incompletely understood, in part because it is difficult to separate the effects of disease status and physical activity. We explored the association of human skeletal muscle transcriptomic with four measures of energetics and mitochondria oxidative capacity in healthy individuals. METHODS Using RNA sequencing of vastus lateralis muscle biopsies from 82 GESTALT participants (52 males, aged 22-89 years), we explored gene and splicing variant expression profiles associated with self-reported physical activity, peak oxygen consumption (VO2 peak), muscle oxidative capacity (kPCr) and mitochondrial respiration (Mit-O2 flux). The effect of aging on gene expression was examined in participants with low and high VO2 peak. RESULTS The four measures of energetics were negative correlated with age and generally intercorrelated. We identified protein-coding genes associated with four energetic measures adjusting for age, muscle fiber-ratio, sex and batch effect. Mitochondrial pathways were overrepresented across all energetic variables, albeit with little overlap at the gene level. Alternative spliced transcript isoforms associated with energetics were primarily enriched for cytoplasmic ribonucleoprotein granules. The splicing pathway was up-regulated with aging in low but not in high fitness participants, and transcript isoforms detected in the low fitness group pertain to processes such as cell cycle regulation, RNA/protein localization, nuclear transport and catabolism. CONCLUSIONS A consistent mitochondrial signature emerged across all energetic measures. Alternative splicing was enhanced in older, low fitness participants supporting the energy-splicing axis hypothesis. The identified splicing variants were enriched in pathways involving the accumulation of ribonucleoproteins in cytoplasmic granules, whose function remains unclear. Further research is needed to understand the function of these proteoforms in promoting adaptation to low energy availability.
Collapse
Affiliation(s)
- Stefano Donega
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Esha Gupta
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Gonzalez-Freire
- Translational Research in Aging and Longevity Group (TRIAL group), Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Ann Zenobia Moore
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ceereena Ubaida-Mohien
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Linda Zukley
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Chris Bergeron
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Jan Bergeron
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Arsun Bektas
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Marta Zampino
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Carole Stagg
- Confocal Imaging Facility, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Fred Indig
- Confocal Imaging Facility, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Lisa M Hartnell
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Mary Kaileh
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Kenneth Fishbein
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics (LGG), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Josephine M Egan
- Clinical Research Core (CRC), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology (LMBI), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section (LSS), National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| |
Collapse
|
4
|
Park S, Cha HN, Shin MG, Park S, Kim Y, Kim MS, Shin KH, Thoudam T, Lee EJ, Wolfe RR, Dan J, Koh JH, Kim IY, Choi I, Lee IK, Sung HK, Park SY. Inhibitory Regulation of FOXO1 in PPARδ Expression Drives Mitochondrial Dysfunction and Insulin Resistance. Diabetes 2024; 73:1084-1098. [PMID: 38656552 DOI: 10.2337/db23-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Forkhead box O1 (FOXO1) regulates muscle growth, but the metabolic role of FOXO1 in skeletal muscle and its mechanisms remain unclear. To explore the metabolic role of FOXO1 in skeletal muscle, we generated skeletal muscle-specific Foxo1 inducible knockout (mFOXO1 iKO) mice and fed them a high-fat diet to induce obesity. We measured insulin sensitivity, fatty acid oxidation, mitochondrial function, and exercise capacity in obese mFOXO1 iKO mice and assessed the correlation between FOXO1 and mitochondria-related protein in the skeletal muscle of patients with diabetes. Obese mFOXO1 iKO mice exhibited improved mitochondrial respiratory capacity, which was followed by attenuated insulin resistance, enhanced fatty acid oxidation, and improved skeletal muscle exercise capacity. Transcriptional inhibition of FOXO1 in peroxisome proliferator-activated receptor δ (PPARδ) expression was confirmed in skeletal muscle, and deletion of PPARδ abolished the beneficial effects of FOXO1 deficiency. FOXO1 protein levels were higher in the skeletal muscle of patients with diabetes and negatively correlated with PPARδ and electron transport chain protein levels. These findings highlight FOXO1 as a new repressor in PPARδ gene expression in skeletal muscle and suggest that FOXO1 links insulin resistance and mitochondrial dysfunction in skeletal muscle via PPARδ. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min-Gyeong Shin
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
| | - Min-Seob Kim
- Department of Fundamental Environment Research, Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Robert R Wolfe
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jinmyoung Dan
- Department of Orthopedic Surgery, College of Medicine, CHA University, Gumi, Republic of Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Il-Young Kim
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- The Hospital for Sick Children Research Institute & Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Senotherapy-Based Metabolic Diseases Control Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Hurcombe JA, Barrington F, Marchetti M, Betin VM, Bowen EE, Lay AC, Ni L, Dayalan L, Pope RJ, Brinkkoetter PT, Holzenberger M, Welsh GI, Coward RJ. Contrasting consequences of podocyte insulin-like growth factor 1 receptor inhibition. iScience 2024; 27:109749. [PMID: 38706850 PMCID: PMC11068853 DOI: 10.1016/j.isci.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/12/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Insulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria in vivo and podocyte cell death in vitro. In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury. Proteomic analysis of cultured podocytes revealed that while near-complete loss of podocyte IGF1R results in the downregulation of mitochondrial respiratory complex I and DNA damage repair proteins, partial IGF1R inhibition promotes respiratory complex expression. This suggests that altered mitochondrial function and resistance to podocyte stress depends on the level of IGF1R suppression, the latter determining whether receptor inhibition is protective or detrimental. Our work suggests that the partial suppression of podocyte IGF1R could have therapeutic benefits in treating albuminuric kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Paul T. Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
6
|
Song J, Duivenvoorde LPM, Grefte S, Kuda O, Martínez-Ramírez F, van der Stelt I, Mastorakou D, van Schothorst EM, Keijer J. Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation. Pflugers Arch 2023; 475:1265-1281. [PMID: 37656229 PMCID: PMC10567817 DOI: 10.1007/s00424-023-02854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.
Collapse
Affiliation(s)
- Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Felipe Martínez-Ramírez
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Dimitra Mastorakou
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
8
|
Zhang Y, Zhang Z, Wang SJ, Yang JN, Zhao ZM, Liu XJ. Molecular targets and mechanisms involved in the action of Banxia Shumi decoction in insomnia treatment. Medicine (Baltimore) 2023; 102:e33229. [PMID: 36897671 PMCID: PMC9997805 DOI: 10.1097/md.0000000000033229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Insomnia is a common sleep-wake rhythm disorder, which is closely associated with the occurrence of many serious diseases. Recent researches suggest that circadian rhythms play an important role in regulating sleep duration and sleep quality. Banxia Shumi decoction (BSXM) is a well-known Chinese formula used to treat insomnia in China. However, the overall molecular mechanism behind this therapeutic effect has not yet been fully elucidated. This study aimed to identify the molecular targets and mechanisms involved in the action of BSXM during the treatment of insomnia. Using network pharmacology and molecular docking methods, we investigated the molecular targets and underlying mechanisms of action of BSXM in insomnia therapy. We identified 8 active compounds from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the traditional Chinese medicine integrative database that corresponded to 26 target genes involved in insomnia treatment. The compound-differentially expressed genes of the BXSM network indicated that cavidine and gondoic acid could potentially become key components of drugs used for insomnia treatment. Further analysis revealed that GSK3B, MAPK14, IGF1R, CCL5, and BCL2L11 were core targets significantly associated with the circadian clock. Pathway enrichment analysis of Kyoto Encyclopedia of Genes and Genomes revealed that epidermal growth factor receptor tyrosine kinase inhibitor resistance was the most prominently enriched pathway for BSXM in the insomnia treatment. The forkhead box O signaling pathway was also found to be significantly enriched. These targets were validated using the Gene Expression Omnibus dataset. Molecular docking studies were performed to confirm the binding of cavidine and gondoic acid to the identified core targets. To our knowledge, our study confirmed for the first time that the multi-component, multi-target, and multi-pathway characteristics of BXSM may be the potential mechanism for treating insomnia with respect to the circadian clock gene. The results of this study provided theoretical guidance for researchers to further explore its mechanism of action.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-Jun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin-Ni Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Mi Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi-Jian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Penniman CM, Bhardwaj G, Nowers CJ, Brown CU, Junck TL, Boyer CK, Jena J, Fuqua JD, Lira VA, O'Neill BT. Loss of FoxOs in muscle increases strength and mitochondrial function during aging. J Cachexia Sarcopenia Muscle 2023; 14:243-259. [PMID: 36442857 PMCID: PMC9891940 DOI: 10.1002/jcsm.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Muscle mitochondrial decline is associated with aging-related muscle weakness and insulin resistance. FoxO transcription factors are targets of insulin action and deletion of FoxOs improves mitochondrial function in diabetes. However, disruptions in proteostasis and autophagy are hallmarks of aging and the effect of chronic inhibition of FoxOs in aged muscle is unknown. This study investigated the role of FoxOs in regulating muscle strength and mitochondrial function with age. METHODS We measured muscle strength, cross-sectional area, muscle fibre-type, markers of protein synthesis/degradation, central nuclei, glucose/insulin tolerance, and mitochondrial bioenergetics in 4.5-month (Young) and 22-24-month-old (Aged) muscle-specific FoxO1/3/4 triple KO (TKO) and littermate control (Ctrl) mice. RESULTS Lean mass was increased in Aged TKO compared with both Aged Ctrl and younger groups by 26-33% (P < 0.01). Muscle strength, measured by max force of tibialis anterior (TA) contraction, was 20% lower in Aged Ctrl compared with Young Ctrls (P < 0.01) but was not decreased in Aged TKOs. Increased muscle strength in Young and Aged TKO was associated with 18-48% increased muscle weights compared with Ctrls (P < 0.01). Muscle cross-sectional analysis of TA, soleus, and plantaris revealed increases in fibre size distribution and a 2.5-10-fold increase in central nuclei in Young and Aged TKO mice, without histologic signs of muscle damage. Age-dependent increases in Gadd45a and Ube4a expression as well accumulation of K48 polyubiquitinated proteins were observed in quad and TA but were prevented by FoxO deletion. Young and Aged TKO muscle showed minimal changes in autophagy flux and no accumulation of autophagosomes compared with Ctrl groups. Increased strength in Young and Aged TKO was associated with a 10-20% increase in muscle mitochondrial respiration using glutamate/malate/succinate compared with controls (P < 0.05). OXPHOS subunit expression and complex I activity were decreased 16-34% in Aged Ctrl compared with Young Ctrl but were prevented in Aged TKO. Both Aged Ctrl and Aged TKO showed impaired glucose tolerance by 33% compared to young groups (P < 0.05) indicating improved strength and mitochondrial respiration are not due to improved glycemia. CONCLUSIONS FoxO deletion increases muscle strength even during aging. Deletion of FoxOs maintains muscle strength in part by mild suppression of atrophic pathways, including inhibition of Gadd45a and Ube4a expression, without accumulation of autophagosomes in muscle. Deletion of FoxOs also improved mitochondrial function by maintenance of OXPHOS in both young and aged TKO.
Collapse
Affiliation(s)
- Christie M Penniman
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Gourav Bhardwaj
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Colette J Nowers
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Chandler U Brown
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Taylor L Junck
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Jayashree Jena
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA
| | - Jordan D Fuqua
- Fraternal Order of Eagles Diabetes Research Center and Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center and Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Brian T O'Neill
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242, Iowa City, Iowa, USA.,Veterans Affairs Health Care System, 52242, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|