1
|
Fang H, Sun X, Ding Y, Niu B, Chen Q. Loureirin B analogs mitigate oxidative stress and confer renal protection. Cell Signal 2025; 132:111787. [PMID: 40188928 DOI: 10.1016/j.cellsig.2025.111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes with high morbidity and mortality, necessitating effective treatment. In this study, the Loureirin B analogue (LB-A) was utilized to treat DKD in mice. The results demonstrated that LB-A effectively prevent the progression of DKD in mice, significantly lowering fasting blood glucose levels and reducing proteinuria levels. Additionally, there was a significant decrease in oxidase content in the kidneys of mice, accompanied by an increase in antioxidant oxidase content, resulting in a decrease in ROS levels, mitigating oxidative stress state through modulation of Cxcl1. Cell experiments further confirmed that reducing Cxcl1/Cxcr2 axis activation prevented the onset of DKD induced by high glucose exposure and affected the therapeutic effect of LB-A as well. These findings provide evidences to support that LB-A may mitigate oxidative stress by modulating the Cxcl1 signaling pathway, thereby contributing to renal protection in the context of DKD treatment.
Collapse
Affiliation(s)
- Haowen Fang
- School of environmental and chemical engineering, Shanghai University, Shanghai, PR China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai, PR China.
| | - Yanting Ding
- Tongji Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Biochip Co., Ltd., National Engineering Center for Biochip at Shanghai, Shanghai, PR China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, PR China.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
2
|
Zhu Y, Dong C, Xu Z, Lou Y, Tian N, Guan Y, Nie P, Luo M, Luo P. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Diabetic Nephropathy by Inhibiting Ferroptosis via the JNK/KEAP1/NRF2 Signaling Pathway. Antioxid Redox Signal 2024. [PMID: 39602247 DOI: 10.1089/ars.2024.0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aims: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with no therapeutic interventions available to control its progression. Ferroptosis, an iron-dependent regulated cell death characterized by lipid peroxidation, plays a pivotal role in the pathogenesis of DN. Human umbilical cord mesenchymal stem cells (hUCMSCs) are an effective treatment modality for DN; however, the underlying mechanism of action remains unclear. The aim of the present study was to investigate whether hUCMSCs alleviate DN via inhibiting ferroptosis and its molecular mechanisms in type 2 diabetic mice and high-glucose and palmitate-stimulated human renal tubular epithelial cell (HK-11) models. Results: Our findings revealed that hUCMSCs improved the renal structure and function and tubular injuries. HUCMSC treatment can inhibit ferroptosis by decreasing iron content, reducing reactive oxygen species, malondialdehyde and 4-hydroxynonenal generation, decreasing the expression of positive ferroptosis mediator transferrin receptor 1 and long-chain acyl-CoA synthetase 4, and enhancing the expression of negative ferroptosis mediators (i.e., ferritin heavy chain, glutathione peroxidase 4, and system Xc-cystine/glutamate reverse transporter). Mechanistically, hUCMSC treatment inhibited c-Jun N-terminal kinase (JNK) and Kelch-like ECH-associated protein 1 (KEAP1) activation while increasing the expression of nuclear factor erythroid 2-related factor 2 (NRF2). Furthermore, pretreatment of HK-11 cells with NRF2 siRNA, the JNK inhibitor SP600125, or the JNK agonist anisomycin demonstrated the regulation of the JNK/KEAP1/NRF2 signaling pathway by hUCMSCs. Innovation and Conclusion: HUCMSCs inhibit ferroptosis in DN via the JNK/KEAP1/NRF2 signaling pathway, providing a new perspective and scientific evidence for treating DN. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Changqing Dong
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Zhiheng Xu
- Department of Radiology, Changchun Stomatological Hospital, Changchun, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Na Tian
- Research and Development Department, Jilin Tuohua Biotechnology Co., Ltd., Siping, P.R. China
| | - Yucan Guan
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
3
|
Lay AC, Tran VDT, Nair V, Betin V, Hurcombe JA, Barrington AF, Pope RJ, Burdet F, Mehl F, Kryvokhyzha D, Ahmad A, Sinton MC, Lewis P, Wilson MC, Menon R, Otto E, Heesom KJ, Ibberson M, Looker HC, Nelson RG, Ju W, Kretzler M, Satchell SC, Gomez MF, Coward RJM. Profiling of insulin-resistant kidney models and human biopsies reveals common and cell-type-specific mechanisms underpinning Diabetic Kidney Disease. Nat Commun 2024; 15:10018. [PMID: 39562547 PMCID: PMC11576882 DOI: 10.1038/s41467-024-54089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts. We identify several consistent changes (individual genes, proteins, and molecular pathways) occurring across all insulin-resistant kidney cell types, together with cell-line-specific changes occurring in response to insulin resistance, which are replicated in DKD biopsies. This study provides a rich data resource to direct future studies in elucidating underlying kidney signalling pathways and potential therapeutic targets in DKD.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Van Du T Tran
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Virginie Betin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Robert Jp Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Frédéric Burdet
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Mehl
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dmytro Kryvokhyzha
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Abrar Ahmad
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Matthew C Sinton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip Lewis
- Proteomics Facility, University of Bristol, Bristol, UK
| | | | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Edgar Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, UK
| | - Mark Ibberson
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria F Gomez
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
4
|
Chen C, Lin LY, Wu YW, Chen JW, Chang TT. CXCL5 inhibition improves kidney function by protecting renal tubular epithelial cells in diabetic kidney disease. Clin Immunol 2024; 268:110369. [PMID: 39326648 DOI: 10.1016/j.clim.2024.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Inflammation is one of exacerbating factors of diabetic kidney disease (DKD). Upregulated CXCL5 is found in clinical and experimental diabetes studies. This study aimed to investigate the impact and mechanism of CXCL5 on DKD. DKD patients with different levels of urine albumin-to-creatinine ratio were enrolled. Leprdb/db mice and CXCL5-knockout diabetic mice were used as mouse models for DKD. Human renal tubular epithelial cells were used for in vitro experiments. Circulating CXCL5 were increased in DKD patients compared to the non-DKD subjects. CXCL5 inhibition through CXCL5-neutralizing antibodies or genetic knockout improved kidney function and ameliorated tubular injury and renal fibrosis. In high-glucose-stimulated tubular epithelial cells, administration of CXCL5-neutralizing antibodies or siRNA resulted in reduced phospho-JNK/c-JUN/p65 and the downstream inflammatory, fibrotic, and apoptotic protein expressions. Administration of CXCR2 and JNK inhibitors impeded the CXCL5-induced tubular epithelial cell damages. In conclusion, these findings indicated that anti-CXCL5 strategies may be potential treatments for DKD.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Wen Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Wang M, Peng J, Yang M, Chen J, Shen Y, Liu L, Chen L. Elevated expression of NLRP3 promotes cigarette smoke-induced airway inflammation in chronic obstructive pulmonary disease. Arch Med Sci 2024; 20:1281-1293. [PMID: 39439673 PMCID: PMC11493075 DOI: 10.5114/aoms/176805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction NOD-like receptor protein 3 (NLRP3) is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Here, we explored the role of NLRP3 in cigarette smoke (CS)-induced airway inflammation in COPD. Material and methods NLRP3 expression level was assessed with the microarray data in GEO datasets and validated in serum by ELISA from a case-control cohort. Male C57BL/6J mice were randomly divided into: saline, CS, MCC950 (a specific NLRP3 inhibitor, 10 mg/kg) and CS + MCC950 (5 mg/kg and 10 mg/kg) groups (n = 5 per group). All mice were exposed to CS or air for 4 weeks. Then, broncho-alveolar lavage (BAL) fluid and lung tissues were collected for cell counting, ELISA, HE staining and RNA sequencing with validation by real-time qPCR. Results Compared to non-smokers, NLRP3 expression was significantly elevated in the lung tissues and sera of COPD smokers. CS remarkably induced airway inflammation in mice, characterized by an increase of inflammatory cells and proinflammatory cytokines in BAL fluid and HE inflammatory score, which were ameliorated by MCC950 treatment dose-dependently. Subsequently, 84 candidate genes were selected following RNA sequencing, and five hub genes (Mmp9, IL-1α, Cxcr2, Cxcl10, Ccr1) were then identified by PPI and MCODE analyses, which were confirmed by real-time qPCR. GO and KEGG analysis suggested that the five genes were enriched in a complicated network of inflammatory processes and signaling pathways. Conclusions NLRP3 expression is elevated in lungs and sera of COPD smokers. Inhibition of NLRP3 significantly attenuates CS-induced airway inflammation in mice via inactivation of multiple hub genes and their related inflammatory processes and signaling pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Peng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Chen
- Lab of Pulmonary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Cui S, Chen X, Li J, Wang W, Meng D, Zhu S, Shen S. Endothelial CXCR2 deficiency attenuates renal inflammation and glycocalyx shedding through NF-κB signaling in diabetic kidney disease. Cell Commun Signal 2024; 22:191. [PMID: 38528533 PMCID: PMC10964613 DOI: 10.1186/s12964-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.
Collapse
Affiliation(s)
- Siyuan Cui
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
| | - Xin Chen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Nanjing Medical University, Nanjing, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Deqi Meng
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shiwei Shen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
7
|
Zhang S, Sun F, Zhu J, Qi J, Wang W, Liu Z, Li W, Liu C, Liu X, Wang N, Song X, Zhang D, Qi D, Wang X. Phillyrin ameliorates influenza a virus-induced pulmonary inflammation by antagonizing CXCR2 and inhibiting NLRP3 inflammasome activation. Virol J 2023; 20:262. [PMID: 37957672 PMCID: PMC10644626 DOI: 10.1186/s12985-023-02219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Influenza is an acute viral respiratory illness with high morbidity rates worldwide. Excessive pulmonary inflammation is the main characteristic of lethal influenza A virus (IAV) infections. Therapeutic options for managing influenza are limited to vaccines and some antiviral medications. Phillyrin is one of the major bioactive components of the Chinese herbal medicine Forsythia suspensa, which has the functions of sterilization, heat clearing and detoxification. In this work, the effect and mechanism of phillyrin on H1N1 influenza (PR8)-induced pneumonia were investigated. We reported that phillyrin (15 mg/kg) treatment after viral challenge significantly improved the weight loss, ameliorated pulmonary inflammation and inhibited the accumulation of multiple cytokines and chemokines in bronchoalveolar lavage fluid on 7 days post infection (dpi). In vitro, phillyrin suppressed influenza viral replication (Matrixprotein and nucleoprotein messenger RNA level) and reduced influenza virus-induced cytopathic effect (CPE). Furthermore,chemokine receptor CXCR2 was confirmed to be markedly inhibited by phillyrin. Surface plasmon resonance results reveal that phillyrin exhibits binding affinity to CXCR2, having a binding affinity constant (KD) value of 1.858e-5 M, suggesting that CXCR2 is a potential therapeutic target for phillyrin. Moreover, phillyrin inhibited the mRNA and protein expression levels of Caspase1, ASC and NLRP3 in the lungs of mice with H1N1-induced pneumonia.This study reveals that phillyrin ameliorates IAV-induced pulmonary inflammation by antagonizing CXCR2 and inhibiting NLRP3 inflammasome activation partly.
Collapse
Affiliation(s)
- Shanyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Fengzhi Sun
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Jinlu Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jianhong Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjing Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ziming Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenqian Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chuanguo Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xuehuan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Nonghan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinyu Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Albrecht M, Sticht C, Wagner T, Hettler SA, De La Torre C, Qiu J, Gretz N, Albrecht T, Yard B, Sleeman JP, Garvalov BK. The crosstalk between glomerular endothelial cells and podocytes controls their responses to metabolic stimuli in diabetic nephropathy. Sci Rep 2023; 13:17985. [PMID: 37863933 PMCID: PMC10589299 DOI: 10.1038/s41598-023-45139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.
Collapse
Affiliation(s)
- Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tabea Wagner
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Steffen A Hettler
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Carolina De La Torre
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Benito Yard
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology Campus North, Building 319, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
9
|
Jin H, Xu G, Lu Y, Niu C, Zhang X, Kan T, Cao J, Yang X, Cheng Q, Zhang J, Dong J. Fluoxetine partially alleviates inflammation in the kidney of socially stressed male C57 BL/6 mice. FEBS Open Bio 2023; 13:1723-1736. [PMID: 37400956 PMCID: PMC10476569 DOI: 10.1002/2211-5463.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stress-related illnesses are linked to the onset and progression of renal diseases and depressive disorders. To investigate stress-induced changes in the renal transcriptome associated with the development of depressive behaviors, we generated here a chronic social defeat stress (CSDS) model of C57 BL/6 male mice and then performed RNA sequencing of the kidneys to obtain an inflammation-related transcriptome. Administration of the antidepressant drug fluoxetine (10 mg·kg-1 ·day-1 ) during CSDS induction could partially alleviate renal inflammation and reverse CSDS-induced depression-like behaviors. Moreover, fluoxetine also modulated gene expression of stress-related hormone receptors, including prolactin and melanin-concentrating hormone. These results suggest that CSDS can induce gene expression changes associated with inflammation in the kidney of C57 BL/6 male mice, and this inflammation can be treated effectively by fluoxetine.
Collapse
Affiliation(s)
- Hailong Jin
- The Third CenterPLA General HospitalBeijingChina
| | - Guanglei Xu
- Beijing Institute of Basic Medical SciencesChina
| | - Yuchen Lu
- Beijing Institute of Basic Medical SciencesChina
| | - Chunxiao Niu
- Beijing Institute of Basic Medical SciencesChina
| | | | - Tongtong Kan
- Beijing Institute of Basic Medical SciencesChina
| | - Junxia Cao
- Beijing Institute of Basic Medical SciencesChina
| | - Xiqin Yang
- Beijing Institute of Basic Medical SciencesChina
| | | | - Jiyan Zhang
- Beijing Institute of Basic Medical SciencesChina
| | - Jie Dong
- Beijing Institute of Basic Medical SciencesChina
| |
Collapse
|
10
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
11
|
Sun Y, Dai W, He W. Identification of key immune-related genes and immune infiltration in diabetic nephropathy based on machine learning algorithms. IET Syst Biol 2023. [PMID: 36919187 DOI: 10.1049/syb2.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a complication of diabetes. This study aimed to identify potential diagnostic markers of DN and explore the significance of immune cell infiltration in this pathology. METHODS The GSE30528, GSE96804, and GSE1009 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified by merging the GSE30528 and GSE96804 datasets. Enrichment analyses of the DEGs were performed. A LASSO regression model, support vector machine recursive feature elimination analysis and random forest analysis methods were performed to identify candidate biomarkers. The CIBERSORT algorithm was utilised to compare immune infiltration between DN and normal controls. RESULTS In total, 115 DEGs were obtained. The enrichment analysis showed that the DEGs were prominent in immune and inflammatory responses. The DEGs were closely related to kidney disease, urinary system disease, kidney cancer etc. CXCR2, DUSP1, and LPL were recognised as diagnostic markers of DN. The immune cell infiltration analysis indicated that DN patients contained a higher ratio of memory B cells, gamma delta T cells, M1 macrophages, M2 macrophages etc. cells than normal people. CONCLUSION Immune cell infiltration is important for the occurrence of DN. CXCR2, DUSP1, and LPL may become novel diagnostic markers of DN.
Collapse
Affiliation(s)
- Yue Sun
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiran Dai
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:996776. [PMID: 36353239 PMCID: PMC9637707 DOI: 10.3389/fendo.2022.996776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). However, its pathogenesis remains unclear, and effective prevention and treatment strategies are lacking. Recently, organ-to-organ communication has become a new focus of studies on pathogenesis. Various organs or tissues (the liver, muscle and adipose tissue) secrete a series of proteins or peptides to regulate the homeostasis of distal organs in an endocrine manner. Bone, an important part of the body, can also secrete bone-derived proteins or peptides that act on distal organs. As an organ with high metabolism, the kidney is responsible for signal and material exchange with other organs at any time through circulation. In this review, we briefly discussed bone composition and changes in bone structure and function in DN and summarized the current status of bone-derived proteins and their role in the progression of DN. We speculated that the "bone-kidney axis" is a potential target for early diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|