1
|
Fernandez M, Mendez R. Cytoplasmic regulation of the poly(A) tail length as a potential therapeutic target. RNA (NEW YORK, N.Y.) 2025; 31:402-415. [PMID: 39805658 PMCID: PMC11874964 DOI: 10.1261/rna.080333.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Virtually all mRNAs acquire a poly(A) tail cotranscriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create posttranscriptional gene expression programs, allowing for precise temporal and spatial control. Dysregulation of poly(A) tail length has been linked to various diseases, including cancers, inflammatory and cardiovascular disorders, and neurological syndromes. Cytoplasmic poly(A) tail length is maintained by a dynamic equilibrium between cis-acting elements and cognate factors that promote deadenylation or polyadenylation, enabling rapid gene expression reprogramming in response to internal and external cellular cues. While cytoplasmic deadenylation and its pathophysiological implications have been extensively studied, cytoplasmic polyadenylation and its therapeutic potential remain less explored. This review discusses the distribution, regulation, and mechanisms of cytoplasmic polyadenylation element-binding proteins(CPEBs), highlighting their dual roles in either promoting or repressing gene expression depending on cellular context. We also explore their involvement in diseases such as tumor progression and metastasis, along with their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
2
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Guptta P, Sakthivel S, Teo WW, Naing YT, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Sun L, Giguere V, Chow PKH, Ghosh S, McDonnell DP, Yen PM, Singh BK. Esrra regulates Rplp1-mediated translation of lysosome proteins suppressed in metabolic dysfunction-associated steatohepatitis and reversed by alternate day fasting. Mol Metab 2024; 87:101997. [PMID: 39032642 PMCID: PMC11327444 DOI: 10.1016/j.molmet.2024.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Guptta
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Wei Wen Teo
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Kabilesh Arul
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS 117594, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Pierce K H Chow
- Dept of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre 169608, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA 70808, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore; Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore.
| |
Collapse
|
3
|
Xu J, Liu X, Wu S, Zhang D, Liu X, Xia P, Ling J, Zheng K, Xu M, Shen Y, Zhang J, Yu P. RNA-binding proteins in metabolic-associated fatty liver disease (MAFLD): From mechanism to therapy. Biosci Trends 2023; 17:21-37. [PMID: 36682800 DOI: 10.5582/bst.2022.01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.
Collapse
Affiliation(s)
- Jiawei Xu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Wu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, Guangdong, Guangdong, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Delgado ME, Cárdenas BI, Farran N, Fernandez M. Metabolic Reprogramming of Liver Fibrosis. Cells 2021; 10:3604. [PMID: 34944111 PMCID: PMC8700241 DOI: 10.3390/cells10123604] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet. Worryingly, due to the growing obesity pandemic, fibrosis incidence is on the rise. Here, we aim to summarize the main components and mechanisms involved in the progression of liver fibrosis, with special focus on the metabolic regulation of key effectors of fibrogenesis, hepatic stellate cells (HSCs), and their role in the disease progression. Hepatic cells that undergo metabolic reprogramming require a tightly controlled, fine-tuned cellular response, allowing them to meet their energetic demands without affecting cellular integrity. Here, we aim to discuss the role of ribonucleic acid (RNA)-binding proteins (RBPs), whose dynamic nature being context- and stimuli-dependent make them very suitable for the fibrotic situation. Thus, we will not only summarize the up-to-date literature on the metabolic regulation of HSCs in liver fibrosis, but also on the RBP-dependent post-transcriptional regulation of this metabolic switch that results in such important consequences for the progression of fibrosis and CLD.
Collapse
Affiliation(s)
- M. Eugenia Delgado
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| | | | | | - Mercedes Fernandez
- IDIBAPS Biomedical Research Institute, University of Barcelona, 08036 Barcelona, Spain; (B.I.C.); (N.F.)
| |
Collapse
|