1
|
González-Tokman D, Villada-Bedoya S, Hernández A, Montoya B. Antioxidants, oxidative stress and reactive oxygen species in insects exposed to heat. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100114. [PMID: 40519244 PMCID: PMC12163167 DOI: 10.1016/j.cris.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2025] [Accepted: 05/20/2025] [Indexed: 06/18/2025]
Abstract
In response to high temperatures, insect metabolic rates increase, favoring the release of higher amounts of reactive oxygen species (ROS). These ROS need to be counteracted by antioxidants to avoid oxidative stress, which can lead to cell damage and death. In this manuscript, we review evidence in insects showing the effects of high temperatures on ROS production, the antioxidant defenses reported in insects in response to high and extremely high temperatures and the extent to which they contribute to preventing oxidative damage. Endogenously produced antioxidants can be enzymatic or non-enzymatic and are involved in heat responses in at least seven insect orders. Our review indicates that evidence is very limited for the effect of high temperature on ROS production, but it clearly shows that at least one antioxidant is upregulated during short-term heat exposure. However, the effects of antioxidants in effectively reducing oxidative damage in biomolecules are still poorly supported by evidence. Dietary-dependent antioxidants show strong potential for coping with heat stress, but evidence is limited, although numerous plants produce antioxidant compounds and a great number of insect species feed on plants. The role of antioxidants in heat acclimation and adaptation is promising but evidence is still very limited in insects. Antioxidants also protect from other prooxidant conditions such as pesticide exposure, nutrient stress, or new biotic interactions, which often act in combination. Potential trade-offs between antioxidant use to different functions could define insect survival and pace of life in response to multiple stressors, including high temperatures. Our literature review indicates that there is only limited evidence of the role of antioxidants in preventing oxidative damage caused by heat, opening the possibility that ROS production might be mitigated by the action of uncoupling proteins or degradation of mitochondria. Finally, we conclude by proposing promising research avenues to gain a deeper understanding of the role of ROS and antioxidants in the oxidative balance of insects exposed to mild and extreme heat.
Collapse
Affiliation(s)
| | - Sebastián Villada-Bedoya
- Instituto de Ecología A. C. Xalapa, Veracruz, Mexico
- Neuroecology Lab, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - América Hernández
- Instituto de Ecología A. C. Xalapa, Veracruz, Mexico
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Bibiana Montoya
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
2
|
Harter LN, Stahlschmidt ZR. Softening and Cross-Susceptibility: Exposure to Heat and Desiccation Reduces Future Stress Tolerance in an Insect. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 40364582 DOI: 10.1002/jez.2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
The frequency and duration of environmental stressors, such as heat waves and drought, will continue to grow due to ongoing climate change, thereby increasing the likelihood that organisms will experience stressors consecutively. Exposure to one stressor can improve or impair future tolerance to the same stressor (i.e., hardening or softening, respectively), or enhance or reduce future tolerance to a different stressor (i.e., cross-protection or cross-susceptibility, respectively). Understanding whether stress improves or impairs animals' abilities to withstand future stressors is critical for determining the physiological sensitivity of animals to ongoing climate change. Here, we used a factorial design with the variable field cricket (Gryllus lineaticeps) to evaluate whether prior heat or desiccation stress influenced subsequent heat or dessication tolerance. Given the potential energetic costs of hardening and cross-protection, we further examined whether resource (food) acquisition promoted hardening and cross-susceptibility. Prior heat exposure reduced future heat tolerance (i.e., softening), and prior exposure to both heat and desiccation reduced future desiccation tolerance (i.e., softening and cross-susceptibility), potentially due to terminal reproductive investment. Further, resource acquisition (amount of body mass gained) did not influence stress tolerance because individuals that acquired more resources were not more likely to exhibit benefits (rather than costs) to their future stress tolerance. In sum, our results suggest the increasing frequency of climate-related stressors may pose a significant physiological risk to some animals.
Collapse
Affiliation(s)
- L N Harter
- University of the Pacific, Stockton, California, USA
| | | |
Collapse
|
3
|
Chen Y, Liu Y, Wang R, Nie P, Wei B, Abdel-Fattah RS, Shang S, Dewer Y. Decoding Peroxidase Gene Function in Heat Stress Adaptation of Tetranychus urticae: Unraveling Molecular Mechanisms of Short-Term Thermal Tolerance. Antioxidants (Basel) 2025; 14:562. [PMID: 40427444 PMCID: PMC12108298 DOI: 10.3390/antiox14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Tetranychus urticae (Acari: Tetranychidae) is a widely distributed agricultural pest, and it possesses an exceptional capacity to withstand or adapt to short-term heat stress. To investigate the molecular mechanisms underlying this heat tolerance, using both transcriptome and whole-genome data, we identified six distinct POD genes in T. urticae and characterized their physicochemical properties and structural features. Real-time quantitative PCR (RT-qPCR) was utilized to analyze the expression profiles of these genes under short-term heat stress. Our results show that T. urticae mitigates heat-induced oxidative stress through the upregulation of POD gene expression, highlighting the critical role of these genes in the mite's adaptive response to thermal stress. These findings contribute to a deeper understanding of the molecular pathways that enable T. urticae to survive in fluctuating thermal environments, which is increasingly relevant in the context of global climate change. Furthermore, this study provides a foundation for future research utilizing RNA interference (RNAi) technology to further investigate the functional roles of these POD genes and their potential as targets for pest control strategies.
Collapse
Affiliation(s)
- Yaonian Chen
- Technique College of Agriculture and Forestry, Longnan Normal University, Longnan 742500, China; (Y.C.); (Y.L.); (R.W.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (P.N.); (B.W.)
| | - Yuan Liu
- Technique College of Agriculture and Forestry, Longnan Normal University, Longnan 742500, China; (Y.C.); (Y.L.); (R.W.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (P.N.); (B.W.)
| | - Rangjun Wang
- Technique College of Agriculture and Forestry, Longnan Normal University, Longnan 742500, China; (Y.C.); (Y.L.); (R.W.)
| | - Pengcheng Nie
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (P.N.); (B.W.)
| | - Bin Wei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (P.N.); (B.W.)
| | - Rasha S. Abdel-Fattah
- Scale Insects and Mealybugs Department, Plant Protection Research Institute, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt;
| | - Suqin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (P.N.); (B.W.)
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| |
Collapse
|
4
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
5
|
Fouda M, Negm A, Germoush M, Mahmoud S. Temperature and spinosad-induced modulation of antioxidant enzyme activity and gene expression of adaptive stress-related genes in Ceratitis capitata. Open Vet J 2025; 15:108-117. [PMID: 40092184 PMCID: PMC11910302 DOI: 10.5455/ovj.2025.v15.i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/10/2024] [Indexed: 04/11/2025] Open
Abstract
Background Environmental changes and rising temperatures have intensified the emergence of insect species as significant agricultural pests. Understanding the physiological and molecular responses of these pests to heat stress is essential for developing effective pest management strategies. Aim To investigate the antioxidant enzyme activities and gene expression profiles of Ceratitis capitata under heat stress, spinosad exposure, and their combination to understand adaptive mechanisms and potential pathways for pest control. Methods In this study, adult C. capitata were collected from grapes (Vitis mustangensis), mangoes (Mangifera indica), and yellow guava (Psidium guajava) cultivated in Egypt during June, July, and August 2023. Laboratory experiments assessed antioxidant enzyme activities (superoxide dismutase, catalase, peroxidase, malondialdehyde, and glutathione-S-transferases) and gene expression levels of heat-shock protein 70, cytochrome P450, CYP6a9, and metallothionein. Adults were exposed to three conditions; high temperature (40°C); spinosad at its LC50 (3.2 µg/ml) at 25°C, and combined spinosad exposure and high temperature. Results Heat stress significantly increased the activity of antioxidant enzymes and the expression of stress-response genes in C. capitata. Spinosad exposure induced moderate increases in these activities, suggesting a detoxification response. The combined treatment of spinosad and heat stress amplified these effects, indicating a synergistic stress response. Conclusion These findings provide insight into the molecular mechanisms underlying C . capitata’s heat tolerance and suggest potential pathways for pest control interventions under climate change.
Collapse
Affiliation(s)
- Maged Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Amira Negm
- Horticulture Pests Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mousa Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Shaymaa Mahmoud
- Zoology Department, Faculty of Science, Menoufia University, Shebeen Elkom, Egypt
| |
Collapse
|
6
|
Fouda M, Negm A, Germoush M, Mahmoud S. Temperature and spinosad-induced modulation of antioxidant enzyme activity and gene expression of adaptive stress-related genes in Ceratitis capitata. Open Vet J 2025; 15:108-117. [PMID: 40092184 PMCID: PMC11910302 DOI: 10.5455/ovj.2024.v15.i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/10/2024] [Indexed: 03/19/2025] Open
Abstract
Background Environmental changes and rising temperatures have intensified the emergence of insect species as significant agricultural pests. Understanding the physiological and molecular responses of these pests to heat stress is essential for developing effective pest management strategies. Aim To investigate the antioxidant enzyme activities and gene expression profiles of Ceratitis capitata under heat stress, spinosad exposure, and their combination to understand adaptive mechanisms and potential pathways for pest control. Methods In this study, adult C. capitata were collected from grapes (Vitis mustangensis), mangoes (Mangifera indica), and yellow guava (Psidium guajava) cultivated in Egypt during June, July, and August 2023. Laboratory experiments assessed antioxidant enzyme activities (superoxide dismutase, catalase, peroxidase, malondialdehyde, and glutathione-S-transferases) and gene expression levels of heat-shock protein 70, cytochrome P450, CYP6a9, and metallothionein. Adults were exposed to three conditions; high temperature (40°C); spinosad at its LC50 (3.2 µg/ml) at 25°C, and combined spinosad exposure and high temperature. Results Heat stress significantly increased the activity of antioxidant enzymes and the expression of stress-response genes in C. capitata. Spinosad exposure induced moderate increases in these activities, suggesting a detoxification response. The combined treatment of spinosad and heat stress amplified these effects, indicating a synergistic stress response. Conclusion These findings provide insight into the molecular mechanisms underlying C . capitata’s heat tolerance and suggest potential pathways for pest control interventions under climate change.
Collapse
Affiliation(s)
- Maged Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Amira Negm
- Horticulture Pests Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mousa Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Shaymaa Mahmoud
- Zoology Department, Faculty of Science, Menoufia University, Shebeen Elkom, Egypt
| |
Collapse
|
7
|
Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Effect of Benzyl Alcohol on Main Defense System Components of Galleria mellonella (Lepidoptera). Int J Mol Sci 2024; 25:11209. [PMID: 39456990 PMCID: PMC11508370 DOI: 10.3390/ijms252011209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Benzyl alcohol (E1519) is an aromatic alcohol used in the pharmaceutical and food industry. It is used to protect food products against microorganisms during storage, as a flavoring in the production of chocolate and confectionery products, as an important ingredient in fragrance, and as a preservative in medical products. However, little is known of its effect on insects. The main aim of this study was to determine the influence of benzyl alcohol on the defense systems of the wax moth Galleria mellonella, i.e., its cuticular lipid composition and critical elements of its immune system. A gas chromatography/mass spectrometry (GC/MS) analysis found benzyl alcohol treatment to elicit significant quantitative and qualitative differences in cuticular free fatty acid (FFA) profiles. Our findings indicate that benzyl alcohol treatment increased the levels of HSP70 and HSP90 and decreased those of HSF1, histamine, and cysteinyl leukotriene. Benzyl alcohol application also increased dismutase level in the hemolymph and lowered those of catalase and 8-OHdG. The treatment also had negative effects on G. mellonella hemocytes and a Sf9 cell line in vitro: 48-h treatment resulted in morphological changes, with the remaining cells being clearly spindle-shaped with numerous granules. The high insecticidal activity of compound and its lack of toxicity towards vertebrates suggest it could be an effective insecticide.
Collapse
Affiliation(s)
- Michalina Kazek
- Department of Microbiology, Molecular Genetics and Genomics, Centre of Advanced Materials and Technology CEZAMAT, Warsaw University of Technology, ul. Poleczki 19, 02-822 Warszawa, Poland;
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Anna K. Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
| | - Mieczysława I. Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; (A.K.); (A.K.W.)
- BIOMIBO, ul. Strzygłowska 15, 04-872 Warszawa, Poland
| |
Collapse
|
8
|
Hou QL, Zhu JN, Fang M, Chen EH. Comparative transcriptome analysis provides comprehensive insight into the molecular mechanisms of heat adaption in Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101300. [PMID: 39084150 DOI: 10.1016/j.cbd.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Plutella xylostella is one of the most destructive pests for cruciferous vegetables, and is adaptability to different environmental stressors. However, we still know little about the molecular mechanisms of how P. xylostella adapt to thermal stress. Here, the comparative transcriptome analysis was conducted from the samples of control (27 °C, CK) and heat treatment (40 °C, 40 T) P. xylostella. The results showed 1253 genes were differentially expressed, with 624 and 629 genes up- and down-regulated respectively. The annotation analysis demonstrated that "Energy production and conversion", "Protein processing in endoplasmic reticulum", "Peroxisome" and "Tyrosine metabolism" pathways were significantly enriched. Additionally, we found the expression levels of heat shock protein genes (Hsps), cuticle related genes and mitochondrial genes were significantly up-regulated in 40 T insects, suggesting their vital roles in improving adaption to heat stress. Importantly, the SOD activity and MDA content of P. xylostella were both identified to be increased under high temperature stress, indicating the elevated antioxidant reactions might be involved in response to heat stress. In conclusion, the present study offered us an overview of gene expression changes after 40 °C treatments, and found some critical pathways and genes of P. xylostella might play the critical roles in resisting heat stress.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mei Fang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
9
|
Khurshid A, Inayat R, Basit A, Mobarak SH, Gui SH, Liu TX. Effects of thiamethoxam on physiological and molecular responses to potato plant (Solanum tuberosum), green peach aphid (Myzus persicae), and parasitoid (Aphidius gifuensis). PEST MANAGEMENT SCIENCE 2024; 80:3000-3009. [PMID: 38312101 DOI: 10.1002/ps.8006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 μm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 μm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rehan Inayat
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | | | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Song L, Yu C, Li W, Liu L, Sun Q, Liu H, Wang S. Differential Antioxidant Enzyme Gene Expression and Functional Analysis of Pyridaben-Susceptible and -Resistant Strains of Tetranychus truncatus (Acari: Tetranychidae) under High Temperature Stress. INSECTS 2024; 15:381. [PMID: 38921096 PMCID: PMC11204104 DOI: 10.3390/insects15060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Tetranychus truncatus (Acari: Tetranychidae) has caused serious economic losses on some crops (soybean, corn, and cotton) in China, and has developed resistance to most acaricides. Our laboratory study found that T. truncatus was resistant to pyridaben and also adapted to high temperature (34-40 °C). High temperature stress may cause arthropods to produce a large amount of reactive oxygen species (ROS), causing oxidative damage. Antioxidant enzymes, as the main antioxidants, can reduce the damage caused by excessive ROS in arthropods. In order to study the adaptation mechanism of the pyridaben-resistant strain of T. truncatus to high temperature and the role of antioxidant enzyme genes under high temperature stress, four antioxidant enzyme genes, TtSOD, TtPOD3, TtPOD4, and TtGSTs2, were screened according to the transcriptome sequencing data of pyridaben-susceptible and -resistant strains in T. truncatus. Firstly, the phylogeny and structure analyses of these four genes were carried out. Then, real-time quantitative PCR (RT-qPCR) technology was used to analyze the gene expression patterns of antioxidant enzymes in two strains of T. truncatus at three different high temperature ranges (34 °C, 38 °C, and 42 °C). The results showed that the expression levels of four antioxidant enzyme genes of two strains of T. truncatus were induced by high temperature stress, and the expression levels of antioxidant enzyme genes were significantly different in each development state. The gene expression of antioxidant enzyme genes in resistant strains at the adult stage was significantly higher than that in susceptible strains. After the TtSOD and TtPOD4 genes of adult mites of the resistant strain were silenced by RNA interference (RNAi) technology, the mortality rate of mites with TtPOD4 gene silencing reached 41.11% after 96 h at 34 °C, which was significantly higher than that of the control and TtSOD gene silencing. It has been confirmed that the TtPOD4 gene plays a key role in the adaptation of pyridaben-resistant strain of T. truncatus to high temperature. It lays a theoretical foundation for revealing the thermal adaptation mechanism of T. truncatus.
Collapse
Affiliation(s)
- Liwen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yang CL, Meng JY, Zhou JY, Zhang JS, Zhang CY. Integrated transcriptomic and proteomic analyses reveal the molecular mechanism underlying the thermotolerant response of Spodoptera frugiperda. Int J Biol Macromol 2024; 264:130578. [PMID: 38432264 DOI: 10.1016/j.ijbiomac.2024.130578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a highly destructive invasive pest with remarkable adaptability to extreme climatic conditions, posing a substantial global threat. Although the effects of temperature stress on the biological and ecological properties of S. frugiperda have been elucidated, the molecular mechanisms underlying its responses remain unclear. Herein, we combined transcriptomic and proteomic analyses to explore the key genes and proteins involved in thermotolerance regulation in S. frugiperda larvae at 42 °C. Overall, 1528 differentially expressed genes (DEGs) and 154 differentially expressed proteins (DEPs) were identified in S. frugiperda larvae under heat stress, including antioxidant enzymes, heat shock proteins (Hsps), cytochrome P450s, starch and sucrose metabolism genes, and insulin signaling pathway genes, indicating their involvement in heat tolerance regulation. Correlation analysis of DEGs and DEPs revealed that seven and eight had the same and opposite expression profiles, respectively. After nanocarrier-mediated RNA interference knockdown of SfHsp29, SfHsp20.4, SfCAT, and SfGST, the body weight and mortality of S. frugiperda larvae significantly decreased and increased under heat stress, respectively. This indicates that SfHsp29, SfHsp20.4, SfCAT, and SfGST play a crucial role in the thermotolerance of S. frugiperda larvae. These results provide insight into the mechanism of heat tolerance in S. frugiperda.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China
| | - Jian-Yun Zhou
- Guiyang Tobacco Company Kaiyang Branch, Guiyang, Guizhou 550300, China
| | - Jin-Shan Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
12
|
Zhu T, Li W, Xue H, Dong S, Wang J, Shang S, Dewer Y. Selection, Identification, and Transcript Expression Analysis of Antioxidant Enzyme Genes in Neoseiulus barkeri after Short-Term Heat Stress. Antioxidants (Basel) 2023; 12:1998. [PMID: 38001851 PMCID: PMC10669032 DOI: 10.3390/antiox12111998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Phytoseiid mite Neoseiulus barkeri is a crucial biological control agent utilized to control pest mites and many insects in crops all over the world. However, they are vulnerable to multiple environmental pressures, with high-temperature stress being the most significant challenge. Heat stress disrupts the balance of reactive oxygen species (ROS) levels in organisms, resulting in oxidative stress within the body. Antioxidant enzymes play a crucial role in effectively neutralizing and clearing ROS. In this study, comparative transcriptomics and quantitative real-time PCR (qRT-PCR) were employed to assess the impact of short-term heat stress on the transcript expression of antioxidant enzyme genes in N. barkeri. We primarily identified four antioxidant enzyme genes (NbSOD, NbPrx, NbCAT, and NbGPX) in N. barkeri after exposure to short-term heat stress. Then, new data on the expression patterns of these genes were generated. RNA sequencing and bioinformatics analysis revealed that NbSOD belongs to the Fe/Mn family of superoxide dismutase (SOD), which was identified as MnSOD. NbPrx was classified as a 1-Cys peroxiredoxin of the peroxidase family, whereas NbCAT was recognized as a classical catalase, and NbGPX was determined as cytoplasmic glutathione peroxidase-1 (GPX1). Transcriptional expression analysis of these four genes was conducted at different high temperatures: 36 °C, 38 °C, and 40 °C for 2, 4, and 6 h. The results also showed that all four genes exhibited significant up-regulation in response to short-term heat stress. Similarly, the highest expression levels for NbSOD, NbPrx, and NbCAT were observed at 40 °C for 4 h. However, NbGPX displayed its maximum expression value at 38 °C for 4 h. Overall, the obtained data suggest that short-term heat stress increases levels of ROS generated inside living organisms, which disrupts the oxidative balance and leads to alterations in the expression levels of antioxidant enzyme genes.
Collapse
Affiliation(s)
- Tong Zhu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Weizhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - He Xue
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Shibo Dong
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Jianhui Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Suqin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (H.X.); (S.D.); (J.W.)
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, Giza 12618, Egypt
| |
Collapse
|
13
|
Zhu H, Ahmad S, Duan Z, Shi J, Tang X, Dong Q, Xi C, Ge L, Wu T, Tan Y. The Jinggangmycin-induced Mthl2 gene regulates the development and stress resistance in Nilaparvata lugens Stål (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105630. [PMID: 37945234 DOI: 10.1016/j.pestbp.2023.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
Methuselah (Mth) belongs to the GPCR family B, which regulates various biological processes and stress responses. The previous transcriptome data showed jinggangmycin (JGM)-induced Mthl2 expression. However, its detailed functional role remained unclear in brown planthopper, Nilaparvata lugens Stål. In adult N. lugens, the Mthl2 gene showed dominant expressions, notably in ovaries and fat body tissues. The 3rd instar nymphs treated with JGM increased starvation, oxidative stress, and high temperature (34 °C) tolerance of the adults. On the contrary, under dsMthl2 treatment, completely opposite phenotypes were observed. The lipid synthesis genes (DGAT1and PNPLA3) of both females and males treated with JGM in the nymphal stage were observed with high expressions, while the lipolysis of the Lipase 3 gene was observed with low expressions. The JGM increased triglyceride (TG) content, fat body droplet size, and the number of fat body droplets. The same treatment also increased the Glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities. An increase in the heat shock protein (HSP70 and HSP90) expression levels was also observed under JGM treatment but not dsMthl2. The current study demonstrated the influential role of the Mthl genes, particularly the Mthl2 gene, in modulating the growth and development and stress-responsiveness in N. lugens. Thus, providing a platform for future applied research programs controlling N. lugens population in rice fields.
Collapse
Affiliation(s)
- Haowen Zhu
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Zhirou Duan
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Junting Shi
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Chuanyuan Xi
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, PR China.
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
14
|
Mason CJ, Shikano I. Hotter days, stronger immunity? Exploring the impact of rising temperatures on insect gut health and microbial relationships. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101096. [PMID: 37517588 DOI: 10.1016/j.cois.2023.101096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Climate change can generate cascading effects on animals through compounding stressors. As ectotherms, insects are particularly susceptible to variation in temperature and extreme events. How insects respond to temperature often occurs with respect to their environment, and a pertinent question involves how thermal stress integrates with insect capabilities to resolve interactions with gut microorganisms (microbiome and gut pathogens). We explore the impact of elevated temperatures and the impact of the host physiological response influencing immune system regulation and the gut microbiome. We summarize the literature involving how elevated temperature extremes impact insect gut immune systems, and how in turn that alters potential interactions with the gut microbiome and potential pathogens. Temperature effects on immunity are complex, and ultimate effects on microbial components can vary by system. Moreover, there are multiple questions yet to explore in how insects contend with simultaneous abiotic stressors and potential trade-offs in their response to opportunistic microbiota.
Collapse
Affiliation(s)
- Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 513, Honolulu, HI 96822, USA.
| |
Collapse
|
15
|
Zhen Z, Dongying F, Yue S, Lipeng Z, Jingjing L, Minying L, Yuanyuan X, Juan H, Shiren S, Yi R, Bin H, Chao M. Translational profile of coding and non-coding RNAs revealed by genome wide profiling of ribosome footprints in grapevine. FRONTIERS IN PLANT SCIENCE 2023; 14:1097846. [PMID: 36844052 PMCID: PMC9944039 DOI: 10.3389/fpls.2023.1097846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Translation is a crucial process during plant growth and morphogenesis. In grapevine (Vitis vinifera L.), many transcripts can be detected by RNA sequencing; however, their translational regulation is still largely unknown, and a great number of translation products have not yet been identified. Here, ribosome footprint sequencing was carried out to reveal the translational profile of RNAs in grapevine. A total of 8291 detected transcripts were divided into four parts, including the coding, untranslated regions (UTR), intron, and intergenic regions, and the 26 nt ribosome-protected fragments (RPFs) showed a 3 nt periodic distribution. Furthermore, the predicted proteins were identified and classified by GO analysis. More importantly, 7 heat shock-binding proteins were found to be involved in molecular chaperone DNA J families participating in abiotic stress responses. These 7 proteins have different expression patterns in grape tissues; one of them was significantly upregulated by heat stress according to bioinformatics research and was identified as DNA JA6. The subcellular localization results showed that VvDNA JA6 and VvHSP70 were both localized on the cell membrane. Therefore, we speculate that DNA JA6 may interact with HSP70. In addition, overexpression of VvDNA JA6 and VvHSP70, reduced the malondialdehyde (MDA) content, improved the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), increased the content of proline, an osmolyte substance, and affected the expression of the high-temperature marker genes VvHsfB1, VvHsfB2A, VvHsfC and VvHSP100. In summary, our study proved that VvDNA JA6 and the heat shock protein VvHSP70 play a positive role in the response to heat stress. This study lays a foundation for further exploring the balance between gene expression and protein translation in grapevine under heat stress.
Collapse
Affiliation(s)
- Zhang Zhen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Dongying
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Song Yue
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhang Lipeng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Liu Jingjing
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Liu Minying
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yuanyuan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - He Juan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Song Shiren
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren Yi
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bin
- Changli Research Institute of Fruit Trees, Hebei Academy of Agricultural and Forestry Sciences, Changli, Hebei, China
| | - Ma Chao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Differences in Oxidative Stress Markers and Antioxidant Enzyme Activities in Black Bean Aphid Morphs ( Aphis fabae Scop.) Fed on the Primary Host Viburnum opulus L. Antioxidants (Basel) 2022; 11:antiox11122476. [PMID: 36552684 PMCID: PMC9774543 DOI: 10.3390/antiox11122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Changes in the level of oxidative stress markers-superoxide anion radical (O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) and the activity of antioxidant enzymes-superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in the black bean aphid occurring on the primary host (viburnum plants) were studied. Among the aphid morphs, the lowest contents of O2-, H2O2 and MDA were noted for winged adults (alatae), which were also characterized by the highest activity of antioxidant enzymes. These metabolic features indicate the adaptation of winged morphs to the colonization of new host plants. During spring migration, an increase in the content of oxidative stress markers and antioxidant enzyme activities in wingless females (fundatrigeniae) was observed. The significance of the biochemical adaptation of the black bean aphid to its winter host is discussed.
Collapse
|
17
|
Fu D, Liu J, Pan YN, Zhu JY, Xiao F, Liu M, Xiao R. Three Heat Shock Protein Genes and Antioxidant Enzymes Protect Pardosa pseudoannulata (Araneae: Lycosidae) from High Temperature Stress. Int J Mol Sci 2022; 23:12821. [PMID: 36361611 PMCID: PMC9655195 DOI: 10.3390/ijms232112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pardosa pseudoannulata (P. pseudoannulata) is an essential natural predatory enemy in rice ecosystems. The fluctuating climate may cause them to experience heat stress, whereas heat shock proteins (HSPs) and antioxidant enzymes help resist heat damage. Herein, we cloned and characterized the full-length genes PpHSP27, PpHSP60, and PpHSC70 from P. pseudoannulata. Changes in gene expression levels and superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) activities in adult male and female P. pseudoannulata were measured at different stress exposure times and temperatures. We found that the abovementioned HSP genes belong to the sHSP, HSP60, and HSP70 families. The expression of the three HSP genes and the activities of SOD, CAT, and GST were significantly upregulated with the increasing stress temperature and time. The knockdown of the three HSP genes via RNA interference significantly decreased the survival rate of male and female P. pseudoannulata during high temperature stress. Thus, PpHSP27, PpHSP60, and PpHSC70 play an important role in the heat tolerance of P. pseudoannulata, and SOD, CAT, and GST enable recovery heat stress-induced oxidative damage. Their changes and regulation during high temperature stress can improve spiders' adaptability in the field and enhance the biological control of environmental pests.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Xiao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Inayat R, Khurshid A, Boamah S, Zhang S, Xu B. Mortality, Enzymatic Antioxidant Activity and Gene Expression of Cabbage Aphid (Brevicoryne brassicae L.) in Response to Trichoderma longibrachiatum T6. Front Physiol 2022; 13:901115. [PMID: 35928566 PMCID: PMC9344574 DOI: 10.3389/fphys.2022.901115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aphids are one of the most common insect pests in greenhouse and field crops worldwide, causing significant crop yields and economic losses. The objective of this study was to determine the mortality, enzymatic antioxidant activity and gene expression of cabbage aphids (Brevicoryne brassicae L.) in response to Trichoderma longibrachiatum T6 (T6) at different time points from Day 1 to 7 after inoculation. Our results showed that the highest mortality of B. brassicae was observed on Day 7 at a concentration of 1 × 108 spores ml−1 (73.31%) after inoculation with T6 compared with the control on Day 7 (11.51%). The activities of the enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione S-transferase (GST) were increased by 52.98%, 44.77%, 48.26%, 49.39%, 45.13% and 39.67%, respectively on Day 3 after inoculation with T6 compared to the control. Howerver increased days post treatment (dpt) decreased the activities of SOD, POD, CAT, APX, GPX and GST enzymes by 20.79%, 21.05%, 13.75%, 20.45%, 25.38%, and 19.76% repectively on Day 7 compared to control. The transcript levels of SOD, POD, CAT, GPX, and GST genes were increased by 10.87, 9.87, 12.77, 6.22 and 4.07 respectively at Day 3 after inoculation with T6 in comparison to the control. However, the SOD, POD, CAT, GPX, and GST transcription levels decreased by 0.43, 0.44, 0.35, 0.52 and 0.47 respectively, compared to control at Day 7. Our results suggest that the T6 strain has a potential effect on the antioxidant activity and mortality of B. brassicae and therefore could be used as a natural biocontrol agent against B. brassicae in the future.
Collapse
Affiliation(s)
| | | | | | - Shuwu Zhang
- *Correspondence: Shuwu Zhang, ; Bingliang Xu,
| | | |
Collapse
|