1
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2025; 69:427-448. [PMID: 38565403 PMCID: PMC11954808 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Yin L, Ni K, Mao T, Tian S, Liu C, Chen J, Zhou M, Li H, Hu Q. Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors. Pharmacol Ther 2025; 267:108802. [PMID: 39862926 DOI: 10.1016/j.pharmthera.2025.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects. As a class of GPCRs located on the surface of cell membranes, the discovery and clinical implementation of adenosine and P2Y receptors purinergic signaling modulators have progressed dramatically. However, many preclinical drug candidates targeting purinergic receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning ligands into the clinic, the renewed impetus has focused on the modulation of purinergic receptor function by exogenous agonists/antagonists and allosteric modulators to exploit biased agonism. This article provides a brief overview of the research progress on the mechanism of purinergic biased signal transduction from the conformational changes of purinergic GPCRs and biased ligands primarily, and highlights therapeutically relevant biased agonism at purinergic receptors.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Chunxiao Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayao Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith IF. ER and SOCE Ca 2+ signals are not required for directed cell migration in human iPSC-derived microglia. Cell Calcium 2024; 123:102923. [PMID: 38970922 DOI: 10.1016/j.ceca.2024.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or - following major injuries - by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Immunology, University of California, Irvine, CA, United States
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| |
Collapse
|
4
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith I. ER and SOCE Ca 2+ signals are not required for directed cell migration in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576126. [PMID: 38293075 PMCID: PMC10827168 DOI: 10.1101/2024.01.18.576126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Stefano L. Sensi
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Immunology, University of California, Irvine, Irvine, United States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| |
Collapse
|
5
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|