1
|
Osaka J, Ishii A, Wang X, Iwanaga R, Kawamura H, Akino S, Sugie A, Hakeda-Suzuki S, Suzuki T. Complex formation of immunoglobulin superfamily molecules Side-IV and Beat-IIb regulates synaptic specificity. Cell Rep 2024; 43:113798. [PMID: 38381608 DOI: 10.1016/j.celrep.2024.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.
Collapse
Affiliation(s)
- Jiro Osaka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Arisa Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Xu Wang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Riku Iwanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hinata Kawamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shogo Akino
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
2
|
Cicconardi F, Milanetti E, Pinheiro de Castro EC, Mazo-Vargas A, Van Belleghem SM, Ruggieri AA, Rastas P, Hanly J, Evans E, Jiggins CD, Owen McMillan W, Papa R, Di Marino D, Martin A, Montgomery SH. Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. Nat Commun 2023; 14:5620. [PMID: 37699868 PMCID: PMC10497600 DOI: 10.1038/s41467-023-41412-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | | | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joseph Hanly
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, PR, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, Puerto Rico
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|