1
|
Zhu F, Wang Z, Davis K, McSwiggin H, Zyuzin J, Liu J, Yan W, Rehan VK, Jendzjowsky N. Epigenetic Upregulation of Carotid Body Angiotensin Signaling Increases Blood Pressure. Hypertension 2025; 82:293-305. [PMID: 39633580 PMCID: PMC11732265 DOI: 10.1161/hypertensionaha.124.23349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Epigenetic changes can be shaped by a wide array of environmental cues, maternal health, and behaviors. One of the most detrimental behaviors to the developing fetus is nicotine exposure. Perinatal nicotine exposure remains a significant risk factor for cardiovascular health and, in particular, hypertension. Increased basal carotid body (CB) activity and excitation are significant contributors to hypertension. This study investigated the epigenetic changes to CB activity induced by perinatal nicotine exposure resulting in CB-mediated hypertension. METHODS We used a rodent model of perinatal nicotine exposure and cell culture methods. RESULTS We show that the AgtR1 (angiotensin II type 1 receptor) is upregulated in the carotid bodies of nicotine-exposed offspring. These changes were attributed to an upregulation of genetic promotion as DNA methylation of AgtR1 occurred within intron regions, exemplifying an upregulation of genetic transcription for this gene. Nicotine increased angiotensin signaling in vitro. CB reactivity to angiotensin was increased in perinatal nicotine-exposed offspring compared with control offspring. Furthermore, CB denervation reduced arterial pressure because of suppressed efferent sympathetic activity in perinatal nicotine-exposed offspring. CONCLUSIONS Our data demonstrate that perinatal nicotine exposure adversely affects CB afferent sensing, which augments efferent sympathetic activity to increase vasoconstrictor signaling and induce hypertension. Targeting angiotensin signaling in the carotid bodies may provide a way to alleviate hypertension acquired by adverse maternal uterine environments in general and perinatal nicotine exposure in particular.
Collapse
Affiliation(s)
- Fengli Zhu
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Zhuqing Wang
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Kayla Davis
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Jekaterina Zyuzin
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Jie Liu
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
- Division of Metabolic Diseases and Translational Genomics (W.Y.), Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine, University of California, Los Angeles (W.Y., V.K.R., N.J.)
| | - Virender K. Rehan
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
- Division of Neonatology (V.K.R.), Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine, University of California, Los Angeles (W.Y., V.K.R., N.J.)
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation (F.Z., Z.W., K.D., H.M., J.Z., J.L., W.Y., V.K.R., N.J.), Harbor-UCLA Medical Center, Torrance
- Division of Respiratory and Critical Care Medicine and Physiology (N.J.), Harbor-UCLA Medical Center, Torrance
- David Geffen School of Medicine, University of California, Los Angeles (W.Y., V.K.R., N.J.)
| |
Collapse
|
2
|
Viola MF, Franco Taveras E, Mass E. Developmental programming of tissue-resident macrophages. Front Immunol 2024; 15:1475369. [PMID: 39575254 PMCID: PMC11578957 DOI: 10.3389/fimmu.2024.1475369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Macrophages are integral components of the innate immune system that colonize organs early in development and persist into adulthood through self-renewal. Their fate, whether they are replaced by monocytes or retain their embryonic origin, depends on tissue type and integrity. Macrophages are influenced by their environment, a phenomenon referred to as developmental programming. This influence extends beyond the local tissue microenvironment and includes soluble factors that can reach the macrophage niche. These factors include metabolites, antibodies, growth factors, and cytokines, which may originate from maternal diet, lifestyle, infections, or other developmental triggers and perturbations. These influences can alter macrophage transcriptional, epigenetic, and metabolic profiles, affecting cell-cell communication and tissue integrity. In addition to their crucial role in tissue immunity, macrophages play vital roles in tissue development and homeostasis. Consequently, developmental programming of these long-lived cells can modulate tissue physiology and pathology throughout life. In this review, we discuss the ontogeny of macrophages, the necessity of developmental programming by the niche for macrophage identity and function, and how developmental perturbations can affect the programming of macrophages and their subtissular niches, thereby influencing disease onset and progression in adulthood. Understanding these effects can inform targeted interventions or preventive strategies against diseases. Finally, understanding the consequences of developmental programming will shed light on how maternal health and disease may impact the well-being of future generations.
Collapse
Affiliation(s)
| | | | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Zhu F, Wang Z, Davis K, McSwiggin H, Zyuzin J, Liu J, Yan W, Rehan VK, Jendzjowsky N. Epigenetic upregulation of carotid body angiotensin signaling increases blood pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593589. [PMID: 38798667 PMCID: PMC11118542 DOI: 10.1101/2024.05.10.593589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epigenetic changes can be shaped by a wide array of environmental cues as well as maternal health and behaviors. One of the most detrimental behaviors to the developing fetus is nicotine exposure. Perinatal nicotine exposure remains a significant risk factor for cardiovascular health and in particular, hypertension. Increased basal carotid body activity and excitation are significant contributors to hypertension. This study investigated the epigenetic changes to carotid body activity induced by perinatal nicotine exposure resulting in carotid body-mediated hypertension. Using a rodent model of perinatal nicotine exposure, we show that angiotensin II type 1 receptor is upregulated in the carotid bodies of nicotine-exposed offspring. These changes were attributed to an upregulation of genetic promotion as DNA methylation of angiotensin II type 1 receptor occurred within intron regions, exemplifying an upregulation of genetic transcription for these genes. Nicotine increased angiotensin signaling in vitro . Carotid body reactivity to angiotensin was increased in perinatal nicotine-exposed offspring compared to control offspring. Further, carotid body denervation reduced arterial pressure as a result of suppressed efferent sympathetic activity in perinatal nicotine-exposed offspring. Our data demonstrate that perinatal nicotine exposure adversely affects carotid body afferent sensing, which augments efferent sympathetic activity to increase vasoconstrictor signaling and induce hypertension. Targeting angiotensin signaling in the carotid bodies may provide a way to alleviate hypertension acquired by adverse maternal uterine environments in general and perinatal nicotine exposure in particular.
Collapse
|
4
|
Ngema M, Xulu ND, Ngubane PS, Khathi A. Pregestational Prediabetes Induces Maternal Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysregulation and Results in Adverse Foetal Outcomes. Int J Mol Sci 2024; 25:5431. [PMID: 38791468 PMCID: PMC11122116 DOI: 10.3390/ijms25105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Maternal type 2 diabetes mellitus (T2DM) has been shown to result in foetal programming of the hypothalamic-pituitary-adrenal (HPA) axis, leading to adverse foetal outcomes. T2DM is preceded by prediabetes and shares similar pathophysiological complications. However, no studies have investigated the effects of maternal prediabetes on foetal HPA axis function and postnatal offspring development. Hence, this study investigated the effects of pregestational prediabetes on maternal HPA axis function and postnatal offspring development. Pre-diabetic (PD) and non-pre-diabetic (NPD) female Sprague Dawley rats were mated with non-prediabetic males. After gestation, male pups born from the PD and NPD groups were collected. Markers of HPA axis function, adrenocorticotropin hormone (ACTH) and corticosterone, were measured in all dams and pups. Glucose tolerance, insulin and gene expressions of mineralocorticoid (MR) and glucocorticoid (GR) receptors were further measured in all pups at birth and their developmental milestones. The results demonstrated increased basal concentrations of ACTH and corticosterone in the dams from the PD group by comparison to NPD. Furthermore, the results show an increase basal ACTH and corticosterone concentrations, disturbed MR and GR gene expression, glucose intolerance and insulin resistance assessed via the Homeostasis Model Assessment (HOMA) indices in the pups born from the PD group compared to NPD group at all developmental milestones. These observations reveal that pregestational prediabetes is associated with maternal dysregulation of the HPA axis, impacting offspring HPA axis development along with impaired glucose handling.
Collapse
Affiliation(s)
| | | | | | - Andile Khathi
- School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Westville, Private Bag X54001, Durban 4041, KwaZulu Natal, South Africa; (M.N.); (N.D.X.); (P.S.N.)
| |
Collapse
|
5
|
Shook LL, Castro VM, Herzberg EM, Fourman LT, Kaimal AJ, Perlis RH, Edlow AG. Offspring cardiometabolic outcomes and postnatal growth trajectories after exposure to maternal SARS-CoV-2 infection. Obesity (Silver Spring) 2024; 32:969-978. [PMID: 38351665 PMCID: PMC11039385 DOI: 10.1002/oby.23998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE The objective of this study is to determine whether in utero exposure to SARS-CoV-2 is associated with increased risk for a cardiometabolic diagnosis by 18 months of age. METHODS This retrospective electronic health record (EHR)-based cohort study included the live-born offspring of all individuals who delivered during the COVID-19 pandemic (April 1, 2020-December 31, 2021) at eight hospitals in Massachusetts. Offspring exposure was defined as a positive maternal SARS-CoV-2 polymerase chain reaction test during pregnancy. The primary outcome was presence of an ICD-10 code for a cardiometabolic disorder in offspring EHR by 18 months. Weight-, length-, and BMI-for-age z scores were calculated and compared at 6-month intervals from birth to 18 months. RESULTS A total of 29,510 offspring (1599 exposed and 27,911 unexposed) were included. By 18 months, 6.7% of exposed and 4.4% of unexposed offspring had received a cardiometabolic diagnosis (crude odds ratio [OR] 1.47 [95% CI: 1.10 to 1.94], p = 0.007; adjusted OR 1.38 [1.06 to 1.77], p = 0.01). Exposed offspring had a significantly greater mean BMI-for-age z score versus unexposed offspring at 6 months (z score difference 0.19 [95% CI: 0.10 to 0.29], p < 0.001; adjusted difference 0.04 [-0.06 to 0.13], p = 0.4). CONCLUSIONS Exposure to maternal SARS-CoV-2 infection was associated with an increased risk of receiving a cardiometabolic diagnosis by 18 months preceded by greater BMI-for-age at 6 months.
Collapse
Affiliation(s)
- Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Victor M. Castro
- Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Research Information Science and Computing, Mass General Brigham, Somerville, MA
| | - Emily M. Herzberg
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School
| | - Lindsay T. Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anjali J. Kaimal
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Roy H. Perlis
- Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Sur D, Agranyoni O, Kirby M, Cohen N, Bagaev A, Karandasheva K, Shmerkin E, Gorobets D, Savita BK, Avneri R, Divon MS, Lax E, Michaelevski I, Pinhasov A. Nurture outpaces nature: fostering with an attentive mother alters social dominance in a mouse model of stress sensitivity. Mol Psychiatry 2023; 28:3816-3828. [PMID: 37845494 DOI: 10.1038/s41380-023-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.
Collapse
Affiliation(s)
- Debpali Sur
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Oryan Agranyoni
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Michael Kirby
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Naamah Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Anastasia Bagaev
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Kristina Karandasheva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Denis Gorobets
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Brajesh Kumar Savita
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Mali-Salmon Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Izhak Michaelevski
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel.
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
7
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|