1
|
An Y, Cao S, Shi L, Zhang Y, Wang X, Yuan S, Shi Y, Wang B, Liu J, Han CJ. Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway. Brain Res Bull 2025; 221:111226. [PMID: 39870326 DOI: 10.1016/j.brainresbull.2025.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP. However, it is not known whether Sig-1R can ameliorate pathological neuroinflammation in DNP. The present study used a rat model of DNP and a highly selective agonist of Sig-1R to assess the effects of the protein on neuropathic pain in rats with type 2 diabetes mellitus. The rats were divided into Control, Model, Sig-1R agonist PRE-084 (0.3, 0.6, 1 mg/kg), and metformin (Met, 20 mg/kg) groups, with seven rats per group, and their body weight, fasting blood glucose, mechanical withdrawal threshold and thermal withdrawal latency were tested weekly for two weeks. After treatment with PRE-084, the pain thresholds in the DNP rats were significantly improved, together with pathological changes in the dorsal root ganglion, reductions in the serum levels of TNF-α, IL-1β, IL-6, MOD, and prostaglandin E2 (PGE2), and the activity of superoxide dismutase was increased. The mRNA levels of TNF-α, IL-1β, and cyclooxygenase 2 (COX-2) were reduced. Pharmacological inhibition of Sig-1R with BD1047 (10 μM) abolished Sig-1R-mediated activation of lipopolysaccharide-treated BV-2 microglial cells. It was also found that PRE-084 increased phosphorylation of serine/threonine protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β) at Ser9, inhibiting nuclear factor kappa B (NF-κB)-mediated neuroinflammation in the dorsal root ganglion, thus reducing DNP. The findings suggest that the effect of Sig-1R agonist PRE-084 on DNP may reduce the level of inflammation through the up-regulation of AKT/GSK-3β and down-regulation of the NF-κB signaling, thereby contributing to the treatment of the disease.
Collapse
Affiliation(s)
- Yuyu An
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shanshan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Leilei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yuhan Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shiyu Yuan
- Department of Pharmacy, The Second affiliated hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
2
|
Yang SS, Brooks NAH, Da Silva DE, Gibon J, Islam H, Klegeris A. Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. Purinergic Signal 2025:10.1007/s11302-025-10066-x. [PMID: 39833586 DOI: 10.1007/s11302-025-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Noah A H Brooks
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Dylan E Da Silva
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
3
|
Liang X, Hu Y, Li X, Xu X, Chen Z, Han Y, Han Y, Lang G. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia. Neurochem Int 2025; 182:105917. [PMID: 39675432 DOI: 10.1016/j.neuint.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) is a signaling protein that is constitutively expressed in immune competent cells and plays a crucial role in cell proliferation, apoptosis, migration, deformation, and immunology. Several studies have shown that high expression of PI3Kγ can inhibit the occurrence of inflammation in microglia while also regulating the polarization of microglia to inhibit inflammation and enhance microglial migration and phagocytosis. It is well known that the regulation of microglial polarization, migration, and phagocytosis is key to the treatment of most neurodegenerative diseases. Therefore, in this article, we review the important regulatory role of PI3Kγ in microglia to provide a basis for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinghua Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xinyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xi Xu
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Zhonglan Chen
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yalin Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yingying Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
4
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
5
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
6
|
Castillo C, Grieco M, D'Amone S, Lolli MG, Ursini O, Cortese B. Hypoxia effects on glioblastoma progression through YAP/TAZ pathway regulation. Cancer Lett 2024; 588:216792. [PMID: 38453044 DOI: 10.1016/j.canlet.2024.216792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The resistance of glioblastomas (GBM) to standard therapies poses a clinical challenge with limited survival despite interventions. The tumor microenvironment (TME) orchestrates GBM progression, comprising stromal and immune cells and is characterized by extensive hypoxic regions. Hypoxia activates the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, interacting with the Hippo pathway (YAP/TAZ) in crucial cellular processes. We discuss here the related signaling crosstalk between YAP/TAZ and regions of hypoxia in the TME with particular attention on the MST1/2 and LATS1/2-regulated YAP/TAZ activation, impacting cell proliferation, invasion, and stemness. Moreover, the hypoxia-YAP/TAZ axis influence on angiogenesis, stem cells, and metabolic regulators is defined. By reviewing extracellular matrix alterations activation of YAP/TAZ, modulation of signaling pathways we also discuss the significance of spatial constraints and epigenetic modifications contribution to GBM progression, with potential therapeutic targets in YAP/TAZ-mediated gene regulation. Comprehensive understanding of the hypoxia-Hippo pathway-TME interplay offers insights for novel therapeutic strategies, aiming to provide new directions for treatment.
Collapse
Affiliation(s)
- Carolina Castillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Maddalena Grieco
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Stefania D'Amone
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Soltani A, Chugaeva UY, Ramadan MF, Saleh EAM, Al-Hasnawi SS, Romero-Parra RM, Alsaalamy A, Mustafa YF, Zamanian MY, Golmohammadi M. A narrative review of the effects of dexamethasone on traumatic brain injury in clinical and animal studies: focusing on inflammation. Inflammopharmacology 2023; 31:2955-2971. [PMID: 37843641 DOI: 10.1007/s10787-023-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Collapse
Affiliation(s)
- Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | | | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Antropoli A, Arrigo A, Bianco L, Cavallari E, Berni A, Casoni F, Consalez G, Bandello F, Cremona O, Battaglia Parodi M. HYPERREFLECTIVE BAND IN THE GANGLION CELL LAYER IN RETINITIS PIGMENTOSA. Retina 2023; 43:1348-1355. [PMID: 36996465 DOI: 10.1097/iae.0000000000003801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
PURPOSE To describe a sign that takes the form of a continuous hyperreflective band within the thickness of the ganglion cell layer (GCL), thus dubbed the "hyperreflective ganglion cell layer band" (HGB), which the authors detected in a fraction of patients affected by retinitis pigmentosa (RP). METHODS Retrospective, cross-sectional, observational study. Optical coherence tomography (OCT) images of patients with RP examined between May 2015 and June 2021 were retrospectively reviewed for the presence of HGB, epiretinal membrane (ERM), macular hole, and cystoid macular edema (CME). The ellipsoid zone (EZ) width was also measured. A subgroup of patients underwent microperimetry in the central 2°, 4°, and 10°. RESULTS One hundred and fifty-four eyes from 77 subjects were included in the study. The HGB was present in 39 (25.3%) eyes with RP. Mean best-corrected visual acuity (BCVA) was 0.39 ± 0.05 logMAR (approximately 20/50 Snellen equivalent) and 0.18 ± 0.03 logMAR (approximately 20/32 Snellen equivalent) in eyes with and without HGB, respectively ( P < 0.001). The two groups did not differ regarding EZ width; mean 2°, 4°, and 10° retinal sensitivity; and prevalence of CME, ERM, and macular hole. The multivariable analysis showed the presence of HGB to be a predictor of poorer BCVA ( P < 0.001). CONCLUSION HGB is an OCT finding detectable in approximately a quarter of eyes with RP and is associated with a poorer visual function. In the discussion, the authors speculate about possible morphogenetic scenarios to explain this observation.
Collapse
Affiliation(s)
- Alessio Antropoli
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| | - Alessandro Arrigo
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| | - Lorenzo Bianco
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| | - Elena Cavallari
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| | - Alessandro Berni
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| | | | | | - Francesco Bandello
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| | | | - Maurizio Battaglia Parodi
- Department of Ophthalmology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
| |
Collapse
|
9
|
Estuani J, Godinho J, Borges SC, Neves CQ, Milani H, Buttow NC. Global cerebral ischemia followed by long-term reperfusion promotes neurodegeneration, oxidative stress, and inflammation in the small intestine in Wistar rats. Tissue Cell 2023; 81:102033. [PMID: 36764059 DOI: 10.1016/j.tice.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
AIMS Brain ischemia and reperfusion may occur in several clinical conditions that have high rates of mortality and disability, compromising an individual's quality of life. Brain injury can affect organs beyond the brain, such as the gastrointestinal tract. The present study investigated the effects of cerebral ischemia on the ileum and jejunum during a chronic reperfusion period by examining oxidative stress, inflammatory parameters, and the myenteric plexus in Wistar rats. MAIN METHODS Ischemia was induced by the four-vessel occlusion model for 15 min with 52 days of reperfusion. Oxidative stress and inflammatory markers were evaluated using biochemical techniques. Gastrointestinal transit time was evaluated, and immunofluorescence techniques were used to examine morpho-quantitative aspects of myenteric neurons. KEY FINDINGS Brain ischemia and reperfusion promoted inflammation, characterized by increases in myeloperoxidase and N-acetylglycosaminidase activity, oxidative stress, and lipid hydroperoxides, decreases in superoxide dismutase and catalase activity, a decrease in levels of reduced glutathione, neurodegeneration in the gut, and slow gastrointestinal transit. SIGNIFICANCE Chronic ischemia and reperfusion promoted a slow gastrointestinal transit time, oxidative stress, and inflammation and neurodegeneration in the small intestine in rats. These findings indicate that the use of antioxidant and antiinflammatory molecules even after a long period of reperfusion may be useful to alleviate the consequences of this pathology.
Collapse
Affiliation(s)
- Julia Estuani
- Biosciences and Pathophysiology Program, State University of Maringá, Maringá, PR, Brazil
| | - Jacqueline Godinho
- Pharmaceutical Sciences Program, State University of Maringá, Maringá, PR, Brazil
| | | | - Camila Quaglio Neves
- Program in Biological Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá, Av. Colombo 5790, block H79 room 105 A, CEP: 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
10
|
Simões JL, Sobierai LD, Leal IF, Dos Santos MV, Coiado JV, Bagatini MD. Action of the Purinergic and Cholinergic Anti-inflammatory Pathways on Oxidative Stress in Patients with Alzheimer's Disease in the Context of the COVID-19 Pandemic. Neuroscience 2023; 512:110-132. [PMID: 36526078 PMCID: PMC9746135 DOI: 10.1016/j.neuroscience.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). This neurodegenerative disease is aggravated in cases involving SARS-CoV-2 and its inflammatory biomarkers, accelerating accumulation of β-amyloid peptide, hyperphosphorylation of tau protein, and production of reactive oxygen species, which lead to homeostasis imbalance. The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Júlia L.B. Simões
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Inayá F. Leal
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D. Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil,Corresponding author
| |
Collapse
|
11
|
Castillo C, Bravo-Arrepol G, Wendt A, Saez-Orellana F, Millar C, Burgos CF, Gavilán J, Pacheco C, Ahumada-Rudolph R, Napiórkowska M, Pérez C, Becerra J, Fuentealba J, Cabrera-Pardo JR. Neuroprotective Properties of Eudesmin on a Cellular Model of Amyloid-β Peptide Toxicity. J Alzheimers Dis 2023; 94:S97-S108. [PMID: 36463456 PMCID: PMC10473145 DOI: 10.3233/jad-220935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. One of the hallmarks in AD is amyloid-β peptide (Aβ) accumulation, where the soluble oligomers of Aβ (AβOs) are the most toxic species, deteriorating the synaptic function, membrane integrity, and neuronal structures, which ultimately lead to apoptosis. Currently, there are no drugs to arrest AD progression, and current scientific efforts are focused on searching for novel leads to control this disease. Lignans are compounds extracted from conifers and have several medicinal properties. Eudesmin (Eu) is an extractable lignan from the wood of Araucaria araucana, a native tree from Chile. This metabolite has shown a range of biological properties, including the ability to control inflammation and antibacterial effects. OBJECTIVE In this study, the neuroprotective abilities of Eu on synaptic failure induced by AβOs were analyzed. METHODS Using neuronal models, PC12 cells, and in silico simulations we evaluated the neuroprotective effect of Eu (30 nM) against the toxicity induced by AβOs. RESULTS In primary cultures from mouse hippocampus, Eu preserved the synaptic structure against AβOs toxicity, maintaining stable levels of the presynaptic protein SV2 at the same concentration. Eu also averted synapsis failure from the AβOs toxicity by sustaining the frequencies of cytosolic Ca2+ transients. Finally, we found that Eu (30 nM) interacts with the Aβ aggregation process inducing a decrease in AβOs toxicity, suggesting an alternative mechanism to explain the neuroprotective activity of Eu. CONCLUSION We believe that Eu represents a novel lead that reduces the Aβ toxicity, opening new research venues for lignans as neuroprotective agents.
Collapse
Affiliation(s)
- Carolina Castillo
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gastón Bravo-Arrepol
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
| | - Aline Wendt
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Saez-Orellana
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Camila Millar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carla Pacheco
- Departamento de Bioquímica Clínica, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Claudia Pérez
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Unidad de Desarrollo Tecnológico, Parque Industrial Coronel, Universidad de Concepción, Concepción, Chile
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| |
Collapse
|
12
|
Noonin C, Peerapen P, Thongboonkerd V. Contamination of bacterial extracellular vesicles (bEVs) in human urinary extracellular vesicles (uEVs) samples and their effects on uEVs study. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e69. [PMID: 38938597 PMCID: PMC11080850 DOI: 10.1002/jex2.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/29/2024]
Abstract
Bacterial overgrowth is common for improperly stored urine. However, its effects on human urinary extracellular vesicles (uEVs) study had not been previously examined nor documented. This study investigated the presence of bacterial EVs (bEVs) contaminated in uEVs samples and their effects on uEVs study. Nanoscale uEVs were isolated from normal human urine immediately after collection (0-h) or after 25°C-storage with/without preservative (10 mM NaN3) for up to 24-h. Turbidity, bacterial count and total uEVs proteins abnormally increased in the 8-h and 24-h-stored urine without NaN3. NanoLC-ESI-LTQ-Orbitrap MS/MS identified 6-13 bacterial proteins in these contaminated uEVs samples. PCR also detected bacterial DNAs in these contaminated uEVs samples. Besides, uEVs derived from 8-h and 24-h urine without NaN3 induced macrophage activation (CD11b and phagocytosis) and secretion of cytokines (IFN-α, IL-8, and TGF-β) from macrophages and renal cells (HEK-293, HK-2, and MDCK). All of these effects induced by bacterial contamination were partially/completely prevented by NaN3. Interestingly, macrophage activation and cytokine secretion were also induced by bEVs purified from Escherichia coli. This study clearly shows evidence of bEVs contamination and their effects on human uEVs study when the urine samples were inappropriately stored, whereas NaN3 can partially/completely prevent such effects from the contaminated bEVs.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
13
|
Distinct and Dynamic Transcriptome Adaptations of iPSC-Generated Astrocytes after Cytokine Stimulation. Cells 2022; 11:cells11172644. [PMID: 36078052 PMCID: PMC9455058 DOI: 10.3390/cells11172644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Astrocytes (ACs) do not only play a role in normal neurogenesis and brain homeostasis, but also in inflammatory and neurodevelopmental disorders. We studied here the different patterns of inflammatory activation triggered by cytokines in human induced pluripotent stem cell (iPSC)-derived ACs. An optimized differentiation protocol provided non-inflamed ACs. These cells reacted to TNFα with a rapid translocation of NFκB, while AC precursors showed little response. Transcriptome changes were quantified at seven time points (2–72 h) after stimulation with TNFα, IFNγ or TNFα plus IFNγ. TNFα triggered a strong response within 2 h. It peaked from 12–24 h and reverted towards the ground state after 72 h. Activation by IFNγ was also rapid, but the response pattern differed from that of TNFα. For instance, several chemokines up-regulated by TNFα were not affected by IFNγ. Instead, MHC-II-related antigen presentation was drastically enhanced. The combination of the two cytokines led to a stronger and more persistent response. For instance, TRIB3 up-regulation by the combination of TNFα plus IFNγ may have slowed NFκB inactivation. Additionally, highly synergistic regulation was observed for inflammation modifiers, such as CASP4, and for STAT1-controlled genes. The combination of the cytokines also increased oxidative stress markers (e.g., CHAC1), led to phenotypic changes in ACs and triggered markers related to cell death. In summary, these data demonstrate that there is a large bandwidth of pro-inflammatory AC states, and that single markers are not suitable to describe AC activation or their modulation in disease, development and therapy.
Collapse
|
14
|
Zhang Y, Wang Z, Wang R, Xia L, Cai Y, Tong F, Gao Y, Ding J, Wang X. Conditional knockout of ASK1 in microglia/macrophages attenuates epileptic seizures and long-term neurobehavioural comorbidities by modulating the inflammatory responses of microglia/macrophages. J Neuroinflammation 2022; 19:202. [PMID: 35941644 PMCID: PMC9361603 DOI: 10.1186/s12974-022-02560-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Apoptosis signal-regulating kinase 1 (ASK1) not only causes neuronal programmed cell death via the mitochondrial pathway but also is an essential component of the signalling cascade during microglial activation. We hypothesize that ASK1 selective deletion modulates inflammatory responses in microglia/macrophages(Mi/Mϕ) and attenuates seizure severity and long-term cognitive impairments in an epileptic mouse model. Methods Mi/Mϕ-specific ASK1 conditional knockout (ASK1 cKO) mice were obtained for experiments by mating ASK1flox/flox mice with CX3CR1creER mice with tamoxifen induction. Epileptic seizures were induced by intrahippocampal injection of kainic acid (KA). ASK1 expression and distribution were detected by western blotting and immunofluorescence staining. Seizures were monitored for 24 h per day with video recordings. Cognition, social and stress related activities were assessed with the Y maze test and the three-chamber social novelty preference test. The heterogeneous Mi/Mϕ status and inflammatory profiles were assessed with immunofluorescence staining and real-time polymerase chain reaction (q-PCR). Immunofluorescence staining was used to detect the proportion of Mi/Mϕ in contact with apoptotic neurons, as well as neuronal damage. Results ASK1 was highly expressed in Mi/Mϕ during the acute phase of epilepsy. Conditional knockout of ASK1 in Mi/Mϕ markedly reduced the frequency of seizures in the acute phase and the frequency of spontaneous recurrent seizures (SRSs) in the chronic phase. In addition, ASK1 conditional knockout mice displayed long-term neurobehavioral improvements during the Y maze test and the three-chamber social novelty preference test. ASK1 selective knockout mitigated neuroinflammation, as evidenced by lower levels of Iba1+/CD16+ proinflammatory Mi/Mϕ. Conditional knockout of ASK1 increased Mi/Mϕ proportion in contact with apoptotic neurons. Neuronal loss was partially restored by ASK1 selective knockout. Conclusion Conditional knockout of ASK1 in Mi/Mϕ reduced seizure severity, neurobehavioral impairments, and histological damage, at least via inhibiting proinflammatory microglia/macrophages responses. ASK1 in microglia/macrophages is a potential therapeutic target for inflammatory responses in epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02560-5.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhangyang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongrong Wang
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|