1
|
Hucteau E, Mallard J, Barbi C, Venturelli M, Schott R, Trensz P, Pflumio C, Kalish-Weindling M, Pivot X, Favret F, Ducrocq GP, Dufour SP, Pagano AF, Hureau TJ. Impact of Eccentric versus Concentric Cycling Exercise on Neuromuscular Fatigue and Muscle Damage in Breast Cancer Patients. Med Sci Sports Exerc 2024; 56:2103-2116. [PMID: 38935539 DOI: 10.1249/mss.0000000000003506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
INTRODUCTION This study investigated the magnitude and etiology of neuromuscular fatigue and muscle damage induced by eccentric cycling compared with conventional concentric cycling in patients with breast cancer. METHODS After a gradual familiarization protocol for eccentric cycling, nine patients with early-stage breast cancer performed three cycling sessions in eccentric or concentric mode. The eccentric cycling session (ECC) was compared with concentric cycling sessions matched for power output (CON power ; 80% of concentric peak power output, 95 ± 23 W) or oxygen uptake ( ; 10 ± 2 mL·min·kg -1 ). Preexercise to postexercise changes (30-s through 10-min recovery) in knee extensor maximal voluntary contraction force (MVC), voluntary activation, and quadriceps potentiated twitch force ( Qtw ) were quantified to determine global, central, and peripheral fatigue, respectively. Creatine kinase and lactate dehydrogenase activities were measured in the plasma before and 24 h after exercise as markers of muscle damage. RESULTS Compared with CON power (-11% ± 9%) and (-5% ± 5%), the ECC session resulted in a greater decrease in MVC (-25% ± 12%) postexercise ( P < 0.001). Voluntary activation decreased only in ECC (-9% ± 6% postexercise, P < 0.001). The decrease in Qtw was similar postexercise between ECC and CON power (-39% ± 21% and -40% ± 16%, P > 0.99) but lower in ( P < 0.001). The CON power session resulted in twofold greater compared with the ECC and sessions ( P < 0.001). No change in creatine kinase or lactate dehydrogenase activity was reported from preexercise to 24 h postexercise. CONCLUSIONS The ECC session induced greater neuromuscular fatigue compared with the concentric cycling sessions without generating severe muscle damage. ECC is a promising exercise modality for counteracting neuromuscular maladaptation in patients with breast cancer.
Collapse
Affiliation(s)
| | | | | | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, ITALY
| | - Roland Schott
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | - Philippe Trensz
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | - Carole Pflumio
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | | | - Xavier Pivot
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | | | | | | | | | | |
Collapse
|
2
|
Mira J, Brownstein CG, Kennouche D, Varesco G, Roma E, Lapole T, Millet GY. Reliability of Corticospinal and Motoneuronal Excitability Evaluation during Unfatiguing and Fatiguing Cycling Exercise. Med Sci Sports Exerc 2024; 56:1849-1859. [PMID: 38619970 DOI: 10.1249/mss.0000000000003465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Central nervous system excitability depends on the task performed, muscle group solicited, and contraction type. However, little is known on corticospinal and motoneuronal excitability measured during locomotor exercise. This study aimed at determining the reliability of motor-evoked potentials (MEP) and thoracic motor-evoked potentials (TMEP) in dynamic mode during unfatiguing and fatiguing cycling exercise. METHODS Twenty-two participants completed four visits. Visit 1 comprised familiarization and an incremental cycling test to determine maximal power output ( Wmax ). The remaining visits encompassed unfatiguing evaluations, which included a total of eight brief bouts of moderate- (50% Wmax ) and high-intensity cycling (80% Wmax ), four at each intensity. In each bout, a set of two TMEPs, five MEPs, and one M-max were obtained. Subsequently, a fatiguing exercise to exhaustion at 80% Wmax was performed, with four sets of measurements 3 min through the exercise and four additional sets at exhaustion, both measured at 50% Wmax . RESULTS Intraclass correlation coefficients (ICCs) for 5, 10, 15, and 20 MEP·Mmax -1 revealed excellent reliability at both intensities and during cycling to exhaustion (ICC ≥0.92). TMEP·Mmax -1 showed ICCs ≥0.82 for moderate and high intensity, and it was not affected by fatigability. Overall standard error of measurement was 0.090 (0.083, 0.097) for MEP·Mmax -1 and 0.114 (0.105, 0.125) for TMEP·Mmax -1 . A systematic bias associated with the number of stimulations, especially at high intensity, suggested that the evaluation itself may be influenced by fatigability. A mean reduction of 8% was detected in TMEP·Mmax -1 at exhaustion. CONCLUSIONS Motoneuronal and corticospinal excitability measured in dynamic mode presented good to excellent reliability in unfatiguing and fatiguing exercise. Further studies inducing greater fatigability must be conducted to assess the sensitivity of central nervous system excitability during cycling.
Collapse
Affiliation(s)
- José Mira
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, France
| | - Callum G Brownstein
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UNITED KINGDOM
| | - Djahid Kennouche
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, France
| | - Giorgio Varesco
- Nantes Université, Laboratory Movement - Interactions - Performance (MIP), UR 4334, F-44000 Nantes, France
| | - Enrico Roma
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, France
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, France
| | | |
Collapse
|
3
|
Sarai P, Luff C, Rohani-Shukla C, Strutton PH. Characteristics of motor evoked potentials in patients with peripheral vascular disease. PLoS One 2024; 19:e0290491. [PMID: 38662756 PMCID: PMC11045072 DOI: 10.1371/journal.pone.0290491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
With an aging population, it is common to encounter people diagnosed with peripheral vascular disease (PVD). Some will undergo surgeries during which the spinal cord may be compromised and intraoperative neuromonitoring with motor evoked potentials (MEPs) is employed to help mitigate paralysis. No data exist on characteristics of MEPs in older, PVD patients, which would be valuable for patients undergoing spinal cord at-risk surgery or participating in neurophysiological research. Transcranial magnetic stimulation, which can be delivered to the awake patient, was used to stimulate the motor cortex of 20 patients (mean (±SD)) age 63.2yrs (±11.5) with confirmed PVD, every 10 minutes for one hour with MEPs recorded from selected upper and lower limb muscles. Data were compared to that from 20 healthy volunteers recruited for a protocol development study (28yrs (±7.6)). MEPs did not differ between patient's symptomatic and asymptomatic legs. MEP amplitudes were not different for a given muscle between patients and healthy participants. Except for vastus lateralis, disease severity did not correlate with MEP amplitude. There were no differences over time in the coefficient of variation of MEP amplitude at each time point for any muscle in patients or in healthy participants. Although latencies of MEPs were not different between patients and healthy participants for a given muscle, they were longer in older participants. The results obtained suggest PVD alone does not impact MEPs; there were no differences between more symptomatic and less symptomatic legs. Further, in general, disease severity did not corelate with MEP characteristics. With an aging population, more patients with PVD and cardiovascular risk factors will be participating in neurophysiological studies or undergoing surgery where spinal cord integrity is monitored. Our data show that MEPs from these patients can be easily evoked and interpreted.
Collapse
Affiliation(s)
- Pawandeep Sarai
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Charlotte Luff
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Cyrus Rohani-Shukla
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Paul H. Strutton
- The Nick Davey Laboratory, Division of Medicine, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Woodhead A, Rainer C, Hill J, Murphy CP, North JS, Kidgell D, Tallent J. Corticospinal and spinal responses following a single session of lower limb motor skill and resistance training. Eur J Appl Physiol 2024:10.1007/s00421-024-05464-9. [PMID: 38532177 DOI: 10.1007/s00421-024-05464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Prior studies suggest resistance exercise as a potential form of motor learning due to task-specific corticospinal responses observed in single sessions of motor skill and resistance training. While existing literature primarily focuses on upper limb muscles, revealing a task-dependent nature in eliciting corticospinal responses, our aim was to investigate such responses after a single session of lower limb motor skill and resistance training. Twelve participants engaged in a visuomotor force tracking task, self-paced knee extensions, and a control task. Corticospinal, spinal, and neuromuscular responses were measured using transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). Assessments occurred at baseline, immediately post, and at 30-min intervals over two hours. Force steadiness significantly improved in the visuomotor task (P < 0.001). Significant fixed-effects emerged between conditions for corticospinal excitability, corticospinal inhibition, and spinal excitability (all P < 0.001). Lower limb motor skill training resulted in a greater corticospinal excitability compared to resistance training (mean difference [MD] = 35%, P < 0.001) and control (MD; 37%, P < 0.001). Motor skill training resulted in a lower corticospinal inhibition compared to control (MD; - 10%, P < 0.001) and resistance training (MD; - 9%, P < 0.001). Spinal excitability was lower following motor skill training compared to control (MD; - 28%, P < 0.001). No significant fixed effect of Time or Time*Condition interactions were observed. Our findings highlight task-dependent corticospinal responses in lower limb motor skill training, offering insights for neurorehabilitation program design.
Collapse
Affiliation(s)
- Alex Woodhead
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK.
| | - Christopher Rainer
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Jessica Hill
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Colm P Murphy
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jamie S North
- Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, TW1 4SX, UK
| | - Dawson Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, UK
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, 3199, Australia
| |
Collapse
|
5
|
Walsh JA, McAndrew DJ, Shemmell J, Stapley PJ. Reliability and Variability of Lower Limb Muscle Activation as Indicators of Familiarity to Submaximal Eccentric Cycling. Front Physiol 2022; 13:953517. [PMID: 35874539 PMCID: PMC9304807 DOI: 10.3389/fphys.2022.953517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Submaximal eccentric (ECC) cycling exercise is commonly used in research studies. No previous study has specified the required time naïve participants take to familiarize with submaximal ECC cycling. Therefore, we designed this study to determine whether critical indicators of cycling reliability and variability stabilize during 15 min of submaximal, semi-recumbent ECC cycling (ECC cycling). Twenty-two participants, aged between 18–51 years, volunteered to complete a single experimental session. Each participant completed three peak eccentric torque protocol (PETP) tests, nine countermovement jumps and 15 min of submaximal (i.e., 10% peak power output produced during the PETP tests) ECC cycling. Muscle activation patterns were recorded from six muscles (rectus femoris, RF; vastus lateralis, VL; vastus medialis, VM; soleus, SOL; medial gastrocnemius, GM; tibialis anterior, TA), during prescribed-intensity ECC cycling, using electromyography (EMG). Minute-to-minute changes in the reliability and variability of EMG patterns were examined using intra-class correlation coefficient (ICC) and variance ratios (VR). Differences between target and actual power output were also used as an indicator of familiarization. Activation patterns for 4/6 muscles (RF, VL, VM and GM) became more consistent over the session, the RF, VL and VM increasing from moderate (ICC = 0.5–0.75) to good (ICC = 0.75–0.9) reliability by the 11th minute of cycling and the GM good reliability from the 1st minute (ICC = 0.79, ICC range = 0.70–0.88). Low variability (VR ≤ 0.40) was maintained for VL, VM and GM from the 8th, 8th and 1st minutes, respectively. We also observed a significant decrease in the difference between actual and target power output (χ214 = 30.895, p = 0.006, W = 0.105), expressed primarily between the 2nd and 3rd minute of cycling (Z = -2.677, p = 0.007). Indicators of familiarization during ECC cycling, including deviations from target power output levels and the reliability and variability of muscle activation patterns stabilized within 15 min of cycling. Based upon this data, it would be reasonable for future studies to allocate ∼ 15 min to familiarize naïve participants with a submaximal ECC cycling protocol.
Collapse
Affiliation(s)
- Joel A. Walsh
- Neural Control of Movement Laboratory, School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Darryl J. McAndrew
- Neural Control of Movement Laboratory, School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Shemmell
- Neuromotor Adaptation Laboratory, School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Paul J. Stapley
- Neural Control of Movement Laboratory, School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Paul J. Stapley,
| |
Collapse
|
6
|
High Estrogen Levels Cause Greater Leg Muscle Fatigability in Eumenorrheic Young Women after 4 mA Transcranial Direct Current Stimulation. Brain Sci 2022; 12:brainsci12040506. [PMID: 35448037 PMCID: PMC9032567 DOI: 10.3390/brainsci12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) research has shown great outcome variability in motor performance tasks, with one possible source being sex differences. The goal of this study was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after 4 mA tDCS over the left motor cortex (M1). Ten young, healthy eumenorrheic women received 4 mA anodal active or sham stimulation over the left M1 during periods of high and low estrogen levels. A fatigue index (FI) was calculated to quantify fatigability, and the electromyography (EMG) of the knee extensors and flexors was recorded during the FT. The findings showed that tDCS applied during high estrogen levels resulted in greater leg muscle fatigability. Furthermore, a significant increase in EMG activity of the right knee extensors was observed during periods of active stimulation, independent of estrogen level. These results suggest that estrogen levels should be considered in tDCS studies with young healthy women.
Collapse
|