1
|
Mikami R, Sato Y, Kanemura S, Muraoka T, Okumura M, Arai K. Ca 2+-triggered allosteric catalysts crosstalk with cellular redox systems through their foldase- and reductase-like activities. Commun Chem 2025; 8:74. [PMID: 40069499 PMCID: PMC11897157 DOI: 10.1038/s42004-025-01466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Effective chemical catalysts can artificially control intracellular metabolism. However, in conventional catalytic chemistry, activity and cytotoxicity have a trade-off relationship; thus, driving catalysts in living cells remains challenging. To overcome this critical issue at the interface between catalytic chemistry and biology, we developed cell-driven allosteric catalysts that exert catalytic activity at specific times. The synthesized allosteric redox catalysts up- and downregulated their foldase- and antioxidase-like activities in response to varying Ca2+ concentrations, which is a key factor for maintenance of the redox status in cells. In the absence of Ca2+ or at low Ca2+ concentrations, the compounds were mostly inactive and hence did not affect cell viability. In contrast, under specific conditions with elevated cytosolic Ca2+ concentrations, the activated compounds resisted the redox imbalance induced by the reactive oxygen species generated by Ca2+-stimulated mitochondria. Smart catalysts that crosstalk with biological phenomena may provide a platform for new prodrug development guidelines.
Collapse
Affiliation(s)
- Rumi Mikami
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| | - Yuhei Sato
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan.
- Institute of Advanced Biosciences, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, Japan.
| |
Collapse
|
2
|
Guo Z, Li H, Jiang S, Rahmati M, Su J, Yang S, Wu Y, Li Y, Deng Z. The role of AGEs in muscle ageing and sarcopenia. Bone Joint Res 2025; 14:185-198. [PMID: 40036085 PMCID: PMC11878473 DOI: 10.1302/2046-3758.143.bjr-2024-0252.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Sarcopenia is an ageing-related disease featured by the loss of skeletal muscle quality and function. Advanced glycation end-products (AGEs) are a complex set of modified proteins or lipids by non-enzymatic glycosylation and oxidation. The formation of AGEs is irreversible, and they accumulate in tissues with increasing age. Currently, AGEs, as a biomarker of ageing, are viewed as a risk factor for sarcopenia. AGE accumulation could cause harmful effects in the human body such as elevated inflammation levels, enhanced oxidative stress, and targeted glycosylation of proteins inside and outside the cells. Several studies have illustrated the pathogenic role of AGEs in sarcopenia, which includes promoting skeletal muscle atrophy, impairing muscle regeneration, disrupting the normal structure of skeletal muscle extracellular matrix, and contributing to neuromuscular junction lesion and vascular disorders. This article reviews studies focused on the pathogenic role of AGEs in sarcopenia and the potential mechanisms of the detrimental effects, aiming to provide new insights into the pathogenesis of sarcopenia and develop novel methods for the prevention and therapy of sarcopenia.
Collapse
Affiliation(s)
- Zhaojing Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, China
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Jingyue Su
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhan Deng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Chuang YF, Cheng L, Chang WH, Yu SY, Hsu HT, An LM, Yen CH, Chang FR, Lo YC. Spatheliachromen mitigates methylglyoxal-induced myotube atrophy by activating Nrf2, inhibiting ubiquitin-mediated protein degradation, and restoring mitochondrial function. Eur J Pharmacol 2024; 984:177070. [PMID: 39442745 DOI: 10.1016/j.ejphar.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Methylglyoxal (MGO) is a potent precursor of glycative stress that leads to oxidative stress and muscle atrophy in diabetes. Spatheliachromen (FPATM-20), derived from Ficus pumila var. awkeotsang, exhibited potential antioxidant activity. PURPOSE This study aimed to evaluate the potential impact and underlying mechanisms of FPATM-20 on MGO-induced myotube atrophy and mitochondrial dysfunction in mouse skeletal C2C12 myotubes. METHODS Atrophic and antioxidant factors were evaluated using immunofluorescence, enzyme-linked immunosorbent assay, and western blotting. Mitochondrial function was assessed using the ATP assay and Seahorse Cell Mito Stress Test. The glycogen content was determined using periodic acid-Schiff staining. Molecular docking was performed to determine the interaction between FPATM-20 and Keap1. RESULTS In myotubes treated with MGO, FPATM-20 activated the Nrf2 pathway, reduced ROS levels, enhanced antioxidant defense, and increased glycogen content. FPATM-20 improved myotube viability and size, upregulated myosin heavy chain (MyHC) expression, modulated ubiquitin-proteasome molecules (nuclear FoxO3a, atrogin-1, MuRF-1, and p62/SQSTM1), and inhibited apoptosis (Bax/Bcl-2 ratio and cleaved caspase 3). Moreover, FPATM-20 restored mitochondrial function, including mitochondrial membrane potential, mitochondrial oxygen consumption rate, and mitochondrial biogenesis pathway (nuclear PGC-1α/TFAM/FNDC5). The inhibition of Nrf2 with ML385 reversed the effects of FPATM-20 on MGO. Furthermore, molecular docking confirmed the binding of FPATM-20 to Keap1, a suppressor of Nrf2, showing the crucial role of Nrf2 in protective effects. CONCLUSIONS FPATM-20 protects myotubes from MGO toxicity by activating the Nrf2 antioxidant defense, reducing protein degradation and apoptosis, and enhancing mitochondrial function. Thus, FPATM-20 may be a novel agent for preventing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Cheng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan; Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Tanaka M, Kanazashi M, Kondo H, Fujino H. Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle. J Muscle Res Cell Motil 2024; 45:263-273. [PMID: 39085712 DOI: 10.1007/s10974-024-09680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups: one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen- cho, Mihara-shi, Hiroshima, 723-0053, Japan.
| | - Hiroyo Kondo
- Department of Nutrition, Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi, 491- 0938, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| |
Collapse
|
5
|
Egawa T, Ogawa T, Yokokawa T, Kido K, Iyama R, Zhao H, Kurogi E, Goto K, Hayashi T. Glycative stress inhibits hypertrophy and impairs cell membrane integrity in overloaded mouse skeletal muscle. J Cachexia Sarcopenia Muscle 2024; 15:883-896. [PMID: 38575520 PMCID: PMC11154761 DOI: 10.1002/jcsm.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Glycative stress, characterized by the formation and accumulation of advanced glycation end products (AGEs) associated with protein glycation reactions, has been implicated in inducing a decline of muscle function. Although the inverse correlation between glycative stress and muscle mass and strength has been demonstrated, the underlying molecular mechanisms are not fully understood. This study aimed to elucidate how glycative stress affects the skeletal muscle, particularly the adaptive muscle response to hypertrophic stimuli and its molecular mechanism. METHODS Male C57BL/6NCr mice were randomly divided into the following two groups: the bovine serum albumin (BSA)-treated and AGE-treated groups. Mice in the AGE-treated group were intraperitoneally administered AGEs (0.5 mg/g) once daily, whereas those in the BSA-treated group received an equal amount of BSA (0.5 mg/g) as the vehicle control. After 7 days of continuous administration, the right leg plantaris muscle of mice in each group underwent functional overload treatment by synergist ablation for 7 days to induce muscle hypertrophy. In in vitro studies, cultured C2C12 myocytes were treated with AGEs (1 mg/mL) to examine cell adhesion and cell membrane permeability. RESULTS Continuous AGE administration increased the levels of fluorescent AGEs, Nε-(carboxymethyl) lysine, and methylglyoxal-derived hydroimidazolone-1 in both plasma and skeletal muscle. Plantaris muscle weight, muscle fibre cross-sectional area, protein synthesis rate, and the number of myonuclei increased with functional overload in both groups; however, the increase was significantly reduced by AGE treatment. Some muscles of AGE-treated mice were destroyed by functional overload. Proteomic analysis was performed to explore the mechanisms of muscle hypertrophy suppression and myofibre destruction by AGEs. When principal component analysis was performed on 4659 data obtained by proteomic analysis, AGE treatment was observed to affect protein expression only in functionally overloaded muscles. Enrichment analysis of the 436 proteins extracted using the K-means method further identified a group of proteins involved in cell adhesion. Consistent with this finding, dystrophin-glycoprotein complex proteins and cell adhesion-related proteins were confirmed to increase with functional overload; however, this was attenuated by AGE treatment. Additionally, the treatment of C2C12 muscle cells with AGEs inhibited their ability to adhere and increased cell membrane permeability. CONCLUSIONS This study indicates that glycative stress may be a novel pathogenic factor in skeletal muscle dysfunctions by causing loss of membrane integrity and preventing muscle mass gain.
Collapse
Affiliation(s)
- Tatsuro Egawa
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Takeshi Ogawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kohei Kido
- Health and Medical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)KagawaJapan
- Institute for Physical ActivityFukuoka UniversityFukuokaJapan
| | - Ryota Iyama
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Haiyu Zhao
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Eriko Kurogi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Katsumasa Goto
- Laboratory of Physiology, Graduate School of Health SciencesToyohashi SOZO UniversityToyohashiJapan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Kasture SV, Mondkar SA, Khadilkar AV, Gondhalekar K, Sethi A, Khadilkar VV. Dynamic Muscle Function Parameters in Indian Children and Adolescents with Type 1 Diabetes Mellitus: A Case-Control Study. Indian J Endocrinol Metab 2024; 28:201-207. [PMID: 38911118 PMCID: PMC11189292 DOI: 10.4103/ijem.ijem_140_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 06/25/2024] Open
Abstract
Introduction Recent evidence reveals that type 1 diabetes mellitus (T1DM) impairs muscle function (MF) in adolescents. However, despite its importance in physical well-being, data on dynamic MF in Indian children and adolescents (C and Y) with T1DM are scarce. We assessed MF using Jumping Mechanography (JM, a measurement method for motion analysis and assessment of muscle power and force). (1) To assess dynamic MF by JM in C and Y with T1DM as compared to healthy controls (2) To determine predictors of MF in children with T1DM. Methods A cross-sectional observational study on 266 children (133 - T1DM duration >1 year with no known comorbidities + 133 age and gender-matched healthy controls) aged 6-19 years. Anthropometry, body composition, and MF (maximum relative power Pmax/mass, maximum relative force Fmax/BW by JM) were recorded. The lean mass index (LMI) was calculated as lean mass (kg)/height (m2). HbA1c was assessed in T1DM. Independent sample t-test and linear regression were performed. Results MF parameters (Pmax/mass 33.5 ± 7.2 vs 38.0 ± 8.6 W/kg and Fmax/BW 10.5 ± 2.9 vs 11.4 ± 4.1 N/kg, P < 0.05) were significantly lower in T1DM group vs controls. Positive association of body mass index and LMI with both MF parameters and negative association of insulin requirement and HbA1c with Fmax was observed in T1DM. Predictors of MF identified were MMI (Pmax/mass:b = 1.6,95%CI = 0.6-2.6; Fmax/BW:b =2.0,95%CI = 1.6-2.4) and HbA1c (Pmax/mass:b = -2.1,95%CI = -4.5--0.5; Fmax/BW:b = -1.1,95%CI = -2.0--0.2) (P < 0.05). Conclusion C and Y with T1DM exhibits compromised muscle function. Poor glycaemic control increases the risk of having decreased MF, irrespective of diabetes duration and may contribute to sarcopenia in adulthood.
Collapse
Affiliation(s)
- Sonal V. Kasture
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
- School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shruti A. Mondkar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
| | - Anuradha V. Khadilkar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
- School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ketan Gondhalekar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
| | - Anshu Sethi
- Department of Paediatrics, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
| | - Vaman V. Khadilkar
- Department of Growth and Paediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, 32, Sassoon Road, Pune, Maharashtra, India
- School of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
7
|
Suzuki S, Hayashi T, Egawa T. Advanced glycation end products inhibit proliferation and primary cilia formation of myoblasts through receptor for advanced glycation end products pathway. Biochem Biophys Res Commun 2023; 684:149141. [PMID: 37897908 DOI: 10.1016/j.bbrc.2023.149141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
The loss of skeletal muscle mass leads to various adverse conditions and shortened lifespan. The inhibition of myoblast proliferation is one of the causes that trigger muscle atrophy. Advanced glycation end products (AGEs) contribute to muscle atrophy. Since primary cilia are crucial organelles for proliferation, AGEs may inhibit primary cilia formation of myoblasts, thereby leading to impaired proliferation. Therefore, we aimed to clarify whether AGEs impeded the proliferation and formation of primary cilia of C2C12 skeletal muscle cells. AGE treatment inhibited the proliferation and formation of primary cilia. However, the inhibitor of the receptor for advanced glycosylation end products (RAGEs) abolished the inhibition of the proliferation and the primary cilia formation of C2C12 cells by AGEs, suggesting that AGEs cause these inhibitions through the RAGE pathway. In summary, our findings suggested that AGEs suppress the proliferation and formation of primary cilia of myoblasts through the RAGE pathway.
Collapse
Affiliation(s)
- Shinichiro Suzuki
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tatsuro Egawa
- Laboratory of Health and Exercise Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
9
|
Alfuzosin ameliorates diabetes by boosting PGK1 activity in diabetic mice. Life Sci 2023; 317:121491. [PMID: 36758669 DOI: 10.1016/j.lfs.2023.121491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
AIMS Diabetes mellitus (DM) has become a global problem, causing a huge economic burden. The purpose of this study is to find a new potential method and mechanism for the treatment of DM. MAIN METHODS The oxidation, glycation and insulin resistance cell models were built to screen the potential anti-diabetic chemicals. Then the DM mice were induced by the combination of high-fat diet (HFD) and intraperitoneal injection of streptozotocin (50 mg/kg) for five days. The alfuzosin (1.2 mg/kg) was administered by intraperitoneal injection once daily for sequential 12 weeks. Fasting blood glucose, blood lipid, oxidative stress and key markers of glucose metabolism were detected. PGK1/AKT/GLUT4 pathway related proteins were analyzed by Western blot. KEY FINDINGS Alfuzosin ameliorated oxidative stress, glycative stress and insulin resistance in HepG2 cells. Further, in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model, alfuzosin reduced fasting blood glucose, improved insulin sensitivity. Mechanically, alfuzosin activated PGK1 directly to stimulate the protein kinase B (AKT) signaling pathway, thus facilitating glucose uptake as well as improving insulin resistance. SIGNIFICANCE The present finding has shed a new light on the treatment of DM and provides validation for PGK1 as a therapeutic target for DM.
Collapse
|
10
|
Masuko K. Glucose as a Potential Key to Fuel Inflammation in Rheumatoid Arthritis. Nutrients 2022; 14:nu14112349. [PMID: 35684149 PMCID: PMC9182926 DOI: 10.3390/nu14112349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose is the most important source of energy and homeostasis. Recent investigations are clarifying that glucose metabolism might be altered in rheumatoid arthritis (RA), which would play a role in the inflammatory phenotype of rheumatoid synovial fibroblasts. It may also play a role in a variety of autoimmune diseases’ pathophysiology by modulating immune responses and modifying autoantigen expressions. The research into glucose and its metabolism could lead to a better understanding of how carbohydrates contribute to the occurrence and duration of RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Kayo Masuko
- Department of Internal Medicine, Akasaka Sanno Medical Center, Tokyo 107-8402, Japan; ; Tel.: +81-3-6230-3701; Fax: +81-3-6230-3702
- Clinical Research Center, International University of Health and Welfare, Tokyo 107-8402, Japan
| |
Collapse
|