1
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
2
|
Iyer S, Tarique M, Sahay P, Giri S, Bava EP, Guan J, Jain T, Vaish U, Jin X, Moon S, Crossman DK, Dudeja V. Inhibition of hedgehog signaling ameliorates severity of chronic pancreatitis in experimental mouse models. Am J Physiol Gastrointest Liver Physiol 2025; 328:G342-G363. [PMID: 39499252 DOI: 10.1152/ajpgi.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory disease of the pancreas with no specific cure. Research highlighting the pathogenesis and especially the therapeutic aspect remains limited. Aberrant activation of developmental pathways in adults has been implicated in several diseases. Hedgehog pathway is a notable embryonic signaling pathway, known to promote fibrosis of various organs when overactivated. The aim of this study is to explore the role of the hedgehog pathway in the progression of CP and evaluate its inhibition as a novel therapeutic strategy against CP. CP was induced in mice by repeated injections of l-arginine or caerulein in two separate models. Mice were administered with the FDA-approved pharmacological hedgehog pathway inhibitor, vismodegib during or after establishing the disease condition to inhibit hedgehog signaling. Various parameters of CP were analyzed to determine the effect of hedgehog pathway inhibition on the severity and progression of the disease. Our study shows that hedgehog signaling was overactivated during CP and its inhibition was effective in improving the histopathological parameters associated with CP. Vismodegib administration not only halted the progression of CP but was also able to resolve already-established fibrosis. In addition, inhibition of hedgehog signaling resulted in the reversal of pancreatic stellate cell activation ex vivo. Findings from our study justify conducting clinical trials using vismodegib against CP and, thus, could lead to the development of a novel therapeutic strategy for the treatment of CP.NEW & NOTEWORTHY Hedgehog signaling is activated in human and experimental models of CP. Inhibition of hedgehog signaling using an FDA-approved inhibitor, vismodegib, leads to the resolution of fibrosis and improves CP. This study has immense and immediate translational benefits.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad Tarique
- Department of Pediatrics, University of Missouri, Columbia, Missouri, United States
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sagnik Giri
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ejas P Bava
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - JiaShiung Guan
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tejeshwar Jain
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiuwen Jin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sabrina Moon
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veteran Affairs Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Feng H, Chen Z, Li J, Feng J, Yang F, Meng F, Yin H, Guo Y, Xu H, Liu Y, Liu R, Lou W, Liu L, Han X, Su H, Zhang L. Unveiling circulating targets in pancreatic cancer: Insights from proteogenomic evidence and clinical cohorts. iScience 2025; 28:111693. [PMID: 40060891 PMCID: PMC11889678 DOI: 10.1016/j.isci.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/23/2024] [Accepted: 12/23/2024] [Indexed: 03/04/2025] Open
Abstract
Pancreatic cancer (PC), characterized by the absence of effective biomarkers and therapies, remains highly fatal. Data regarding the correlations between PC risk and individual plasma proteome known for minimally invasive biomarkers are scarce. Here, we analyzed 1,345 human plasma proteins using proteome-wide association studies, identifying 78 proteins significantly associated with PC risk. Of these, four proteins (ROR1, FN1, APOA5, and ABO) showed the most substantial causal link to PC, confirmed through Mendelian randomization and colocalization analyses. Data from two clinical cohorts further demonstrated that FN1 and ABO were notably overexpressed in both blood and tumor samples from PC patients, compared to healthy controls or para-tumor tissues. Additionally, elevated FN1 and ABO levels correlated with shorter median survival in patients. Multiple drugs targeting FN1 or ROR1 are available or in clinical trials. These findings suggest that plasma protein FN1 associated with PC holds potential as both prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Yang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuquan Guo
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxin Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Runjie Liu
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 201104, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Su
- Institutes of Biomedical Sciences, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Qiu J, Zhu P, Shi X, Xia J, Dong S, Chen L. Identification of a pancreatic stellate cell gene signature and lncRNA interactions associated with type 2 diabetes progression. Front Endocrinol (Lausanne) 2025; 15:1532609. [PMID: 39872314 PMCID: PMC11769806 DOI: 10.3389/fendo.2024.1532609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Background Type 2 diabetes (T2D) has become a significant global health threat, yet its precise causes and mechanisms remain unclear. This study aims to identify gene expression patterns specific to T2D pancreatic islet cells and to explore the potential role of pancreatic stellate cells (PSCs) in T2D progression through regulatory networks involving lncRNA-mRNA interactions. Methods In this study, we screened for upregulated genes in T2D pancreatic islet samples using bulk sequencing (bulkseq) datasets and mapped these gene expression profiles onto three T2D single-cell RNA sequencing (scRNAseq) datasets. The identified T2D-specific gene features were further validated in an additional T2D scRNAseq dataset, a T1D scRNAseq dataset, and a T2D bulkseq dataset. To investigate regulatory networks, we analyzed the potential lncRNA-mRNA interactions within T2D peripheral blood mononuclear cell (PBMC) bulkseq data. Results Our analysis identified a specific gene panel-COL1A2, VCAN, and SULF1-that was consistently upregulated in T2D pancreatic islet samples. Expression of this gene panel was strongly associated with the activation of pancreatic stellate cells (PSCs), suggesting a unique T2D-specific signature characterized by COL1A2hi/VCANhi/SULF1hi PSCs. This signature was exclusive to T2D and was not observed in Type 1 diabetes (T1D) samples, indicating a distinct role for activated PSCs in T2D progression. Furthermore, we identified six long non-coding RNAs (lncRNAs) that potentially interact with the COL1A2hi/VCANhi/SULF1hi PSCs. These lncRNAs were mapped to a lncRNA-mRNA network, suggesting they may modulate immune responses and potentially reshape the immune microenvironment in T2D. Discussion Our findings highlight the potential immune-regulatory role of PSCs in T2D and suggest that PSC-related lncRNA-mRNA networks could serve as novel therapeutic targets for T2D treatment. This research provides insights into PSCs as a modulator in T2D progression, paving the way for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinjun Qiu
- Shenzhen Pingshan District People’s Hospital, Pingshan Hospital, Southern Medical University, Shenzhen, China
| | - Peng Zhu
- Shenzhen Pingshan District People’s Hospital, Pingshan Hospital, Southern Medical University, Shenzhen, China
- Clinical Laboratory, Shenzhen Pingshan District People’s Hospital, Pingshan Hospital, Southern Medical University, Shenzhen, China
| | - Xing Shi
- Huangjiang Hospital, Dongguan, Guangdong, China
| | - Jinquan Xia
- Huangjiang Hospital, Dongguan, Guangdong, China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Liqun Chen
- Huangjiang Hospital, Dongguan, Guangdong, China
| |
Collapse
|
5
|
Pavlicev M, DiFrisco J, Love AC, Wagner GP. Metabolic complementation between cells drives the evolution of tissues and organs. Biol Lett 2024; 20:20240490. [PMID: 39561800 PMCID: PMC11583983 DOI: 10.1098/rsbl.2024.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
Although evolutionary transitions of individuality have been extensively theorized, little attention has been paid to the origin of levels of organization within organisms. How and why do specialized cells become organized into specialized tissues or organs? What spurs a transition in organizational level in cases where the function is already present in constituent cell types? We propose a hypothesis for this kind of evolutionary transition based on two features of cellular metabolism: metabolic constraints on functional performance and the capacity for metabolic complementation between parenchymal and supporting cells. These features suggest a scenario whereby pre-existing specialized cell types are integrated into tissues when changes to the internal or external environment favour offloading metabolic burdens from a primary specialized cell type onto supporting cells. We illustrate this process of 'supra-functionalization' using the nervous system and pancreas.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Complexity Science Hub, Vienna, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
| | - J DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London, UK
| | - Alan C Love
- Department of Philosophy & Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Institute of Evolution and Cognition Research, Klosterneuburg, Austria
- Yale University, New Haven, CT, USA
- Texas A&M, Hagler Institute for Advanced Study, College Station, TX, USA
| |
Collapse
|
6
|
Ciarelli J, Thangaraj SV, Sun H, Domke S, Alkhatib B, Vyas AK, Gregg B, Sargis RM, Padmanabhan V. Developmental programming: An exploratory analysis of pancreatic islet compromise in female sheep resulting from gestational BPA exposure. Mol Cell Endocrinol 2024; 588:112202. [PMID: 38552943 PMCID: PMC11427076 DOI: 10.1016/j.mce.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and β-cell count, increased glucagon staining and α-cell count, and increased α-cell/β-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.
Collapse
Affiliation(s)
- Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Haijing Sun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Domke
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bashar Alkhatib
- Department of Pediatrics, Washington University, St. Louis, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Robert M Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | | |
Collapse
|
7
|
Sun L, Zheng M, Gao Y, Brigstock DR, Gao R. Retinoic acid signaling pathway in pancreatic stellate cells: Insight into the anti-fibrotic effect and mechanism. Eur J Pharmacol 2024; 967:176374. [PMID: 38309676 DOI: 10.1016/j.ejphar.2024.176374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TβRⅡ, PDGFRβ, β-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-β1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanhang Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
10
|
Sakata N, Yoshimatsu G, Kawakami R, Aoyagi C, Kodama S. Optimal temperature for the long-term culture of adult porcine islets for xenotransplantation. Front Immunol 2023; 14:1280668. [PMID: 37901206 PMCID: PMC10611499 DOI: 10.3389/fimmu.2023.1280668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Porcine islet xenotransplantation represents a promising therapy for severe diabetes mellitus. Long-term culture of porcine islets is a crucial challenge to permit the on-demand provision of islets. We aimed to identify the optimal temperature for the long-term culture of adult porcine islets for xenotransplantation. We evaluated the factors potentially influencing successful 28-day culture of islets at 24°C and 37°C, and found that culture at 37°C contributed to the stability of the morphology of the islets, the proliferation of islet cells, and the recovery of endocrine function, indicated by the expression of genes involved in pancreatic development, hormone production, and glucose-stimulated insulin secretion. These advantages may be provided by islet-derived CD146-positive stellate cells. The efficacy of xenotransplantation using islets cultured for a long time at 37°C was similar to that of overnight-cultured islets. In conclusion, 37°C might be a suitable temperature for the long-term culture of porcine islets, but further modifications will be required for successful xenotransplantation in a clinical setting.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Chikao Aoyagi
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
11
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol 2023; 13:1185093. [PMID: 37409257 PMCID: PMC10318188 DOI: 10.3389/fonc.2023.1185093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic cancer is a strongly malignant gastrointestinal carcinoma characterized by late detection, high mortality rates, poor patient prognosis and lack of effective treatments. Consequently, there is an urgent need to identify novel therapeutic strategies for this disease. Pancreatic stellate cells, which constitute a significant component of the mesenchymal cellular layer within the pancreatic tumor microenvironment, play a pivotal role in modulating this environment through their interactions with pancreatic cancer cells. This paper reviews the mechanisms by which pancreatic stellate cells inhibit antitumor immune responses and promote cancer progression. We also discuss preclinical studies focusing on these cells, with the goal of providing some theoretical references for the development of new therapeutic approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Liu Y, Li N, Zhu Y. Pancreatic Organoids: A Frontier Method for Investigating Pancreatic-Related Diseases. Int J Mol Sci 2023; 24:4027. [PMID: 36835437 PMCID: PMC9959977 DOI: 10.3390/ijms24044027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The pancreas represents an important organ that has not been comprehensively studied in many fields. To fill this gap, many models have been generated, and traditional models have shown good performance in addressing pancreatic-related diseases, but are increasingly struggling to keep up with the need for further research due to ethical issues, genetic heterogeneity and difficult clinical translation. The new era calls for new and more reliable research models. Therefore, organoids have been proposed as a novel model for the evaluation of pancreatic-related diseases such as pancreatic malignancy, diabetes, and pancreatic cystic fibrosis. Compared with common traditional models, including 2D cell culture and gene editing mice, organoids derived from living humans or mice cause minimal harm to the donor, raise fewer ethical concerns, and reasonably address the claims of heterogeneity, which allows for the further development of pathogenesis studies and clinical trial analysis. In this review, we analyse studies on the use of pancreatic organoids in research on pancreatic-related diseases, discuss the advantages and disadvantages, and hypothesize future trends.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Jiangxi Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang 330209, China
| |
Collapse
|
14
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
15
|
Sato Y, Tsuyusaki M, Takahashi-Iwanaga H, Fujisawa R, Masamune A, Hamada S, Matsumoto R, Tanaka Y, Kakuta Y, Yamaguchi-Kabata Y, Furuse T, Wakana S, Shimura T, Kobayashi R, Shinoda Y, Goitsuka R, Maezawa S, Sadakata T, Sano Y, Furuichi T. Loss of CAPS2/Cadps2 leads to exocrine pancreatic cell injury and intracellular accumulation of secretory granules in mice. Front Mol Biosci 2022; 9:1040237. [DOI: 10.3389/fmolb.2022.1040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.
Collapse
|
16
|
Takikawa T, Hamada S, Matsumoto R, Tanaka Y, Kataoka F, Sasaki A, Masamune A. Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines. Int J Mol Sci 2022; 23:ijms23169275. [PMID: 36012531 PMCID: PMC9409091 DOI: 10.3390/ijms23169275] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) play an important role in the progression of pancreatic cancer. Recent studies have shown that cellular senescence and senescence-associated secretory phenotype factors play roles in the progression of cancer. This study aimed to clarify the effects of senescence-induced PSCs on pancreatic cancer cells. Senescence was induced in primary-cultured human PSCs (hPSCs) through treatment with hydrogen peroxide or gemcitabine. Microarray and Gene Ontology analyses showed the alterations in genes and pathways related to cellular senescence and senescence-associated secretory phenotype factors, including the upregulation of C-X-C motif chemokine ligand (CXCL)-1, CXCL2, and CXCL3 through the induction of senescence in hPSCs. Conditioned media of senescent hPSCs increased the proliferation—as found in an assessment with a BrdU incorporation assay—and migration—as found in an assessment with wound-healing and two-chamber assays—of pancreatic cancer AsPC-1 and MIAPaca-2 cell lines. SB225002, a selective CXCR2 antagonist, and SCH-527123, a CXCR1/CXCR2 antagonist, attenuated the effects of conditioned media of senescent hPSCs on the proliferation and migration of pancreatic cancer cells. These results suggest a role of CXCLs as senescence-associated secretory phenotype factors in the interaction between senescent hPSCs and pancreatic cancer cells. Senescent PSCs might be novel therapeutic targets for pancreatic cancer.
Collapse
|
17
|
Yang Z, Xie Z, Wan J, Yi B, Xu T, Shu X, Zhao Z, Tang C. Current Trends and Research Hotspots in Pancreatic Stellate Cells: A Bibliometric Study. Front Oncol 2022; 12:896679. [PMID: 35719926 PMCID: PMC9198254 DOI: 10.3389/fonc.2022.896679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic stellate cells (PSCs) play crucial roles in acute/chronic pancreatitis and pancreatic cancer. In this study, bibliometric analysis was used to quantitatively and qualitatively analyze the literature related to PSCs from 1998-2021 to summarize the current trends and research topics in this field. METHODS Relevant literature data were downloaded from the Science Citation Index Expanded Web of Science Core Collection (WoSCC) on April 07, 2021, using Clarivate Analytics. Biblioshiny R packages, VOSviewer, Citespace, BICOMB, gCLUTO, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com) were used to analyze the manually selected data. RESULTS A total of 958 relevant studies published in 48 countries or regions were identified. The United States of America (USA) had the highest number of publications, followed by the People's Republic of China, Germany, and Japan. Tohoku University (Japan), the University of New South Wales (Australia), the University of Texas MD Anderson Cancer Center (USA), Technical University of Munich (Germany), and University of Rostock (Germany) were the top five institutions with most publications. Nine major clusters were generated using reference co-citation analysis. Keyword burst detection revealed that progression (2016-2021), microenvironment (2016-2021), and tumor microenvironment (2017-2021) were the current frontier keywords. Biclustering analysis identified five research hotspots in the field of PSCs during 1998-2021. CONCLUSION In this study, a scientometric analysis of 958 original documents related to PSCs showed that the research topics of these studies are likely in the transition from acute/chronic pancreatitis to pancreatic cancer. The current research trends regarding PSCs are related to pancreatic cancer, such as tumor microenvironment. This study summarizes five research hotspots in the field of PSCs between 1998 and 2021 and thus may provide insights for future research.
Collapse
Affiliation(s)
- Zhaoming Yang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhiqin Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Wan
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaorong Shu
- Medical Records Statistics Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Caixi Tang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|