1
|
Petersen I, Jonusaite S, Thoben F, Hu MY. Evidence for HCO 3- and NH 3/NH 4+-dependent pH regulatory mechanisms in the alkaline midgut of the sea urchin larva. Am J Physiol Regul Integr Comp Physiol 2025; 328:R685-R699. [PMID: 40248920 DOI: 10.1152/ajpregu.00222.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Alkaline digestive systems are well described for some insect species and their larval stages. More recently, larvae of the members of ambulacraria superphylum consisting of echinoderms and hemichordates were also discovered to have highly alkaline midguts (pH 9.5-10.5) with the underlying acid-base regulatory mechanisms largely unknown. Using pharmacological inhibition of acid-base transporters in conjunction with ion-selective microelectrode measurements and pH-sensitive dyes, we investigated intracellular and extracellular pH regulatory mechanisms of midgut epithelial cells of a sea urchin (Strongylocentrotus purpuratus) larva. Our findings suggest that vacuolar-type H+-ATPase (inhibited by bafilomycin a1), carbonic anhydrase (inhibited by acetazolamide), anion-exchangers (inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid or DIDS), and soluble adenylyl cyclase (inhibited by KH7) play crucial roles in cellular acid-base regulation as well as midgut alkalization. Ammonia excretion rates were decreased in the presence of bafilomycin and colchicine, pointing toward vesicular [Formula: see text] trapping and exocytosis mechanism in eliminating nitrogenous proton equivalents from midgut cells. Finally, midgut perfusion studies revealed ouabain-sensitive luminal [Formula: see text] uptake, suggesting a role for Na+/K+-ATPase-mediated ammonia transport in midgut alkalization. This comprehensive pharmacological analysis provides a new working model relying on the CO2/[Formula: see text] and NH3/[Formula: see text] buffer systems for midgut alkalization in the sea urchin larva. These findings are discussed in the context of other alkalizing systems with strong implications for the conserved role of [Formula: see text] and NH3-driven mechanism of midgut alkalization across the animal kingdom.NEW & NOTEWORTHY Sea urchin larvae evolved highly alkaline conditions in their digestive tracts, and the underlying acid-base regulatory mechanisms are little understood. Here we present evidence that the process of luminal alkalization is cAMP-dependent. Furthermore, our data point toward the involvement of bicarbonate and ammonia in regulating midgut fluid pH. These results identified a novel mechanism for luminal alkalization in the digestive tract of a marine animal with strong implications for other alkalizing systems in animals.
Collapse
Affiliation(s)
- Inga Petersen
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Sima Jonusaite
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
- Department of Biological Sciences, University of Tulsa, Tulsa, Oklahoma, United States
| | - Femke Thoben
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
3
|
Tang H, Du L, Xia C, Luo J. Bridging gaps and seeding futures: A synthesis of soil salinization and the role of plant-soil interactions under climate change. iScience 2024; 27:110804. [PMID: 39286506 PMCID: PMC11404172 DOI: 10.1016/j.isci.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Soil salinization, exacerbated by climate change, poses significant threats to agricultural productivity, land restoration, and ecosystem resilience. This study reviews current knowledge on plant-soil interactions as a strategy to mitigate soil salinization induced by climate change, focusing on their role in soil salinity dynamics and tolerance mechanisms. The review examines how alterations in hydrological and temperature regimes impact soil salinity and how plant-soil mechanisms-such as salt exclusion, compartmentalization, and plant-microbe interactions-contribute to salinity mitigation. This, in turn, enhances soil quality, fertility, microbial diversity, and ecosystem services. The analysis identifies a growing body of research and highlights key themes and emerging trends, including drought, microbial communities, and salt tolerance strategies. This study underscores the critical role of plant-soil interactions in sustainable salinity management and identifies knowledge gaps and future research priorities, advocating for plant-soil interactions as a crucial pathway for improving ecosystem resilience to salinity stress amid climate change.
Collapse
Affiliation(s)
- Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Lei Du
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Chengcheng Xia
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
| | - Jian Luo
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Guido D, Maqoud F, Aloisio M, Mallardi D, Ura B, Gualandi N, Cocca M, Russo F. Transcriptomic Module Discovery of Diarrhea-Predominant Irritable Bowel Syndrome: A Causal Network Inference Approach. Int J Mol Sci 2024; 25:9322. [PMID: 39273274 PMCID: PMC11394741 DOI: 10.3390/ijms25179322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is the most prevalent subtype of IBS, characterized by chronic gastrointestinal symptoms in the absence of identifiable pathological findings. This study aims to investigate the molecular mechanisms underlying IBS-D using transcriptomic data. By employing causal network inference methods, we identify key transcriptomic modules associated with IBS-D. Utilizing data from public databases and applying advanced computational techniques, we uncover potential biomarkers and therapeutic targets. Our analysis reveals significant molecular alterations that affect cellular functions, offering new insights into the complex pathophysiology of IBS-D. These findings enhance our understanding of the disease and may foster the development of more effective treatments.
Collapse
Affiliation(s)
- Davide Guido
- Data Science Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Michelangelo Aloisio
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Domenica Mallardi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Nicolò Gualandi
- Department of Medicine, Laboratory of Biochemistry, University of Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Massimiliano Cocca
- INSERM U1052, CNRS UMR_5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Institute of Hepatology Lyon (IHL), 69002 Lyon, France
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Bari, Italy
| |
Collapse
|
5
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Jiang M, Salari A, Stock C, Nikolovska K, Boedtkjer E, Amiri M, Seidler UE. The electroneutral Na +-HCO 3- cotransporter NBCn1 (SLC4A7) modulates colonic enterocyte pH i, proliferation, and migration. Am J Physiol Cell Physiol 2024; 326:C1625-C1636. [PMID: 38646790 PMCID: PMC11371319 DOI: 10.1152/ajpcell.00079.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.
Collapse
Affiliation(s)
- Min Jiang
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christian Stock
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Kaniecki T, Hughes M, McMahan Z. Managing gastrointestinal manifestations in systemic sclerosis, a mechanistic approach. Expert Rev Clin Immunol 2024; 20:603-622. [PMID: 38406978 PMCID: PMC11098704 DOI: 10.1080/1744666x.2024.2320205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a connective tissue disease with heterogeneous presentation. Gastrointestinal (GI) complications of SSc are characterized by esophageal reflux, abnormal motility, and microbiome dysbiosis, which impact patient quality of life and mortality. Preventative therapeutics are lacking, with management primarily aimed at symptomatic control. AREAS COVERED A broad literature review was conducted through electronic databases and references from key articles. We summarize the physiology of gastric acid production and GI motility to provide context for existing therapies, detail the current understanding of SSc-GI disease, and review GI medications studied in SSc. Finally, we explore new therapeutic options. We propose a management strategy that integrates data on drug efficacy with knowledge of disease pathophysiology, aiming to optimize future therapeutic targets. EXPERT OPINION SSc-GI complications remain a challenge for patients, clinicians, and investigators alike. Management presently focuses on treating symptoms and minimizing mucosal damage. Little evidence exists to suggest immunosuppressive therapy halts progression of GI involvement or reverses damage, leaving many unanswered questions about the optimal clinical approach. Further research focused on identifying patients at risk for GI progression, and the underlying mechanism(s) that drive disease will provide opportunities to prevent long-term damage, and significantly improve patient quality of life.
Collapse
Affiliation(s)
- Timothy Kaniecki
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael Hughes
- Department of Rheumatology, Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Salford, US
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Zsuzsanna McMahan
- Division of Rheumatology, UTHealth Houston McGovern Medical School, Houston, TX
| |
Collapse
|
8
|
Singh P, Sayuk GS, Rosenbaum DP, Edelstein S, Kozuka K, Chang L. An Overview of the Effects of Tenapanor on Visceral Hypersensitivity in the Treatment of Irritable Bowel Syndrome with Constipation. Clin Exp Gastroenterol 2024; 17:87-96. [PMID: 38617992 PMCID: PMC11016248 DOI: 10.2147/ceg.s454526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
Background Patients with irritable bowel syndrome with constipation (IBS-C) experience persistent abdominal pain, a common symptom leading to greater healthcare utilization and reports of treatment non-response. Clinically significant improvements in abdominal pain were observed in clinical trials of tenapanor, a first-in-class inhibitor of sodium/hydrogen exchanger isoform 3 (NHE3), for the treatment of IBS-C in adults. Aim This narrative review reports the current knowledge about visceral hypersensitivity as a mechanism for abdominal pain in patients with IBS-C and explores the published evidence for hypothesized mechanisms by which tenapanor may reduce visceral hypersensitivity leading to the observed clinical response of decreased abdominal pain. Findings Abdominal pain is experienced through activation and signaling of nociceptive dorsal root ganglia that innervate the gut. These sensory afferent neurons may become hypersensitized through signaling of transient receptor potential cation channel subfamily V member 1 (TRPV1), resulting in reduced action potential thresholds. TRPV1 signaling is also a key component of the proinflammatory cascade involving mast cell responses to macromolecule exposure following permeation through the intestinal epithelium. Indirect evidence of this pathway is supported by observations of higher pain in association with increased intestinal permeability in patients with IBS. Tenapanor reduces intestinal sodium absorption, leading to increased water retention in the intestinal lumen, thereby improving gastrointestinal motility. In animal models of visceral hypersensitivity, tenapanor normalized visceromotor responses and normalized TRPV1-mediated nociceptive signaling. Conclusion By improving gastrointestinal motility, decreasing intestinal permeability and inflammation, and normalizing nociception through decreased TRPV1 signaling, tenapanor may reduce visceral hypersensitivity, leading to less abdominal pain in patients with IBS-C. Therapies that have demonstrated effects on visceral hypersensitivity may be the future direction for meaningful abdominal pain relief for patients with IBS-C.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gregory S Sayuk
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Lin Chang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Luo M, Liu Y, Nikolovska K, Riederer B, Patrucco E, Hofmann F, Seidler U. cGMP-dependent kinase 2, Na +/H + exchanger NHE3, and PDZ-adaptor NHERF2 co-assemble in apical membrane microdomains. Acta Physiol (Oxf) 2024; 240:e14125. [PMID: 38533975 DOI: 10.1111/apha.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/28/2024]
Abstract
AIM Trafficking, membrane retention, and signal-specific regulation of the Na+/H+ exchanger 3 (NHE3) are modulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adapter proteins. This study explored the assembly of NHE3 and NHERF2 with the cGMP-dependent kinase II (cGKII) within detergent-resistant membrane microdomains (DRMs, "lipid rafts") during in vivo guanylate cycle C receptor (Gucy2c) activation in murine small intestine. METHODS Small intestinal brush border membranes (siBBMs) were isolated from wild type, NHE3-deficient, cGMP-kinase II-deficient, and NHERF2-deficient mice, after oral application of the heat-stable Escherichia coli toxin (STa) analog linaclotide. Lipid raft and non-raft fractions were separated by Optiprep density gradient centrifugation of Triton X-solubilized siBBMs. Confocal microscopy was performed to study NHE3 redistribution after linaclotide application in vivo. RESULTS In the WT siBBM, NHE3, NHERF2, and cGKII were strongly raft associated. The raft association of NHE3, but not of cGKII, was NHERF2 dependent. After linaclotide application to WT mice, lipid raft association of NHE3 decreased, that of cGKII increased, while that of NHERF2 did not change. NHE3 expression in the BBM shifted from a microvillar to a terminal web region. The linaclotide-induced decrease in NHE3 raft association and in microvillar abundance was abolished in cGKII-deficient mice, and strongly reduced in NHERF2-deficient mice. CONCLUSION NHE3, cGKII, and NHERF2 form a lipid raft-associated signal complex in the siBBM, which mediates the inhibition of salt and water absorption by Gucy2c activation. NHERF2 enhances the raft association of NHE3, which is essential for its close interaction with the exclusively raft-associated activated cGKII.
Collapse
Affiliation(s)
- Min Luo
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Liu
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Enrico Patrucco
- Institut für Pharmakologie und Toxikologie, TU München, München, Germany
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, München, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
11
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
12
|
Wang B, Zhao L, Yang C, Lin Y, Wang S, Ye Y, Luo J, Shen Z. IDH1 K224 acetylation promotes colorectal cancer via miR-9-5p/NHE1 axis-mediated regulation of acidic microenvironment. iScience 2023; 26:107206. [PMID: 37456829 PMCID: PMC10339209 DOI: 10.1016/j.isci.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
The acidic microenvironment is considered an important factor in colorectal cancer (CRC) that contributes to malignant transformation. However, the underlying mechanism remains unclear. In a previous study, we confirmed that IDH1 K224 deacetylation promotes enzymatic activity and the production of α-KG. Here, we further investigate the effect of IDH1 hyperacetylation on the CRC acidic microenvironment. We demonstrate that increased α-KG affects hydroxylation of Ago2 and mediates miR-9-5p targeting NHE1 protein. Knockdown of NHE1 dramatically attenuates CRC cell proliferation and migration by restricting transport of intracellular H+ out of cells. Furthermore, we show that miR-9-5p is the microRNA with the most significant difference in the alteration of IDH1 K224 acetylation and can downregulate NHE1 mRNA. Our data also indicate that hydroxylation stabilizes Ago2, which in turn promotes miR-9-5p activity. Taken together, our results reveal a novel mechanism through which IDH1 deacetylation regulates the cellular acidic microenvironment and inhibits CRC metastasis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, No.11 Xizhimen South Street, Beijing 100044, P.R. China
| |
Collapse
|
13
|
Liu L, Liang L, Yang C, Chen Y. Machine learning-based solution reveals cuproptosis features in inflammatory bowel disease. Front Immunol 2023; 14:1136991. [PMID: 37275904 PMCID: PMC10233155 DOI: 10.3389/fimmu.2023.1136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cuproptosis, a new cell death mode, is majorly modulated by mitochondrial metabolism and protein lipoylation. Nonetheless, cuproptosis-related genes (CRGs) have not yet been thoroughly studied for their clinical significance and relationship with the immune microenvironment in inflammatory bowel disease (IBD). METHODS We screened CRGs that had a significant correlation with immune status, which was determined utilizing single-sample GSEA (ssGSEA) and Gene Expression Omnibus datasets (GSE75214). Furthermore, utilizing the R package "CensusClusterPlus", these CRGs' expression was used to obtain different patient clusters. Subsequently, gene-set enrichment analysis (GSEA), gene set variation analysis (GSVA), and CIBERSORT assessed the variations in the enrichment of gene function and the abundance of immune cell infiltration and immune functions across these clusters. Additionally, weighted gene co-expression network analysis (WGCNA) and analysis of differentially expressed genes (DEGs) were executed, and for the purpose of identifying hub genes between these clusters, the construction of protein-protein interaction (PPI) network was done. Lastly, we used the GSE36807 and GSE10616 datasets as external validation cohorts to validate the immune profiles linked to the expression of CRG. ScRNA-seq profiling was then carried out using the publicly available dataset to examine the CRGs expression in various cell clusters and under various conditions. RESULTS Three CRGs, PDHA1, DLD, and FDX1, had a significant association with different immune profiles in IBD. Patients were subsequently classified into two clusters: low expression levels of DLD and PDHA1, and high expression levels of FDX1 were observed in Cluster 1 compared to Cluster 2. According to GSEA, Cluster 2 had a close association with the RNA processes and protein synthesis whereas Cluster 1 was substantially linked to environmental stress response and metabolism regulations. Furthermore, Cluster 2 had more immune cell types, which were characterized by abundant memory B cells, CD4+ T memory activated cells, and follicular helper T cells, and higher levels of immune-related molecules (CD44, CD276,CTLA4 and ICOS) than Cluster 1. During the analysis, the PPI network was divided into three significant MCODEs using the Molecular Complex Detection (MCODE) algorithm. The three MCODEs containing four genes respectively were linked to mitochondrial metabolism, cell development, ion and amino acid transport. Finally, external validation cohorts validated these findings, and scRNA-seq profiling demonstrated diverse intestinal cellular compositions with a wide variation in CRGs expression in the gut of IBD patients. CONCLUSIONS Cuproptosis has been implicated in IBD, with PDHA1, DLD, and FDX1 having the potential as immune biomarkers and therapeutic targets. These results offer a better understanding of the development of precise, dependable, and cutting-edge diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liping Liang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenghai Yang
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ye Chen
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Salari A, Zhou K, Nikolovska K, Seidler U, Amiri M. Human Colonoid-Myofibroblast Coculture for Study of Apical Na +/H + Exchangers of the Lower Cryptal Neck Region. Int J Mol Sci 2023; 24:ijms24054266. [PMID: 36901695 PMCID: PMC10001859 DOI: 10.3390/ijms24054266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is scarce. The aim of this study was to establish an in vitro model of the colonic lower crypt compartment, which expresses the transit amplifying/progenitor (TA/PE) cells, with accessibility of the apical membrane for functional study of lower crypt-expressed Na+/H+ exchangers (NHEs). Colonic crypts and myofibroblasts were isolated from human transverse colonic biopsies, expanded as three-dimensional (3D) colonoids and myofibroblast monolayers, and characterized. Filter-grown colonic myofibroblast-colonic epithelial cell (CM-CE) cocultures (myofibroblasts on the bottom of the transwell and colonocytes on the filter) were established. The expression pattern for ion transport/junctional/stem cell markers of the CM-CE monolayers was compared with that of nondifferentiated (EM) and differentiated (DM) colonoid monolayers. Fluorometric pHi measurements were performed to characterize apical NHEs. CM-CE cocultures displayed a rapid increase in transepithelial electrical resistance (TEER), paralleled by downregulation of claudin-2. They maintained proliferative activity and an expression pattern resembling TA/PE cells. The CM-CE monolayers displayed high apical Na+/H+ exchange activity, mediated to >80% by NHE2. Human colonoid-myofibroblast cocultures allow the study of ion transporters that are expressed in the apical membrane of the nondifferentiated colonocytes of the cryptal neck region. The NHE2 isoform is the predominant apical Na+/H+ exchanger in this epithelial compartment.
Collapse
Affiliation(s)
- Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Kunyan Zhou
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (U.S.); (M.A.); Tel.: +49-511-532-9427 (U.S.); Fax: +49-511-532-8428 (U.S.)
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (U.S.); (M.A.); Tel.: +49-511-532-9427 (U.S.); Fax: +49-511-532-8428 (U.S.)
| |
Collapse
|
15
|
Bernardazzi C, Sheikh IA, Xu H, Ghishan FK. The Physiological Function and Potential Role of the Ubiquitous Na +/H + Exchanger Isoform 8 (NHE8): An Overview Data. Int J Mol Sci 2022; 23:ijms231810857. [PMID: 36142772 PMCID: PMC9501935 DOI: 10.3390/ijms231810857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Na+/H+ exchanger transporters (NHE) play an important role in various biologic processes including Na+ absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life. Among the different isoforms, the most well-characterized NHEs are the Na+/H+ exchanger isoform 1 (NHE1) and Na+/H+ exchanger isoform 3 (NHE3). However, Na+/H+ exchanger isoform 8 (NHE8) has been receiving attention based on its recent discoveries in the gastrointestinal tract. In this review, we will discuss what is known about the physiological function and potential role of NHE8 in the main organ systems, including useful overviews that could inspire new studies on this multifaceted protein.
Collapse
|