1
|
Lagrange J, Jahangiri M, Baudry G, Mercier N, Monzo L, Lamiral Z, Duarte K, Ter Maaten JM, Zannad F, Voors AA, Girerd N. Association Between Endothelial Alterations, Cardiac Function, and Outcomes From Health to Heart Failure: Insight From the STANISLAS, MEDIA-DHF, and BIOSTAT-CHF Cohorts. J Am Heart Assoc 2025; 14:e040179. [PMID: 40439171 DOI: 10.1161/jaha.124.040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/07/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome, likely stemming from comorbidity-induced inflammation resulting in endothelial dysfunction. Endothelial glycocalyx degradation's role in the development and prognosis of HFpEF remains largely unexplored. Our study aimed at exploring the association between glycocalyx degradation and diastolic dysfunction and determining whether glycocalyx degradation can predict clinical outcomes in patients with HFpEF. METHODS Perlecan and thrombomodulin concentrations were assessed in individuals deemed healthy (STANISLAS [Suivi Temporaire Annuel Non-Invasif de la Santé des Lorrains Assurés Sociaux (Annual Noninvasive Temporary Monitoring of the Health of Insured Lorrainers)] cohort, n=1705) and patients with HFpEF (MEDIA-DHF [Metabolic Road to Diastolic Heart Failure], n=460 and BIOSTAT-CHF [Biology Study to Tailored Treatment in Chronic Heart Failure], n=556) to evaluate endothelial glycocalyx degradation. RESULTS In patients with HFpEF, perlecan but not thrombomodulin was increased compared with controls (P<0.0001 versus P=0.73). In adjusted analysis, perlecan was associated with peak early mitral inflow velocity/peak early diastolic mitral annular velocity ratio and thrombomodulin with peak early diastolic mitral annular velocity in control individuals, whereas perlecan and thrombomodulin were associated with peak early mitral inflow velocity/peak early diastolic mitral annular velocity and left atrial volume index in patients with HFpEF (all P<0.03). Perlecan was significantly associated with cardiovascular hospitalization and death in the MEDIA-DHF (adjusted hazard ratio [HR] for highest tertile versus first tertile, 2.44 [95% CI, 1.11-5.34]; P=0.026) and BIOSTAT-CHF cohorts (adjusted HR, 2.12 [95% CI, 1.49-3.03]; P<0.0001). Thrombomodulin was associated with a worse outcome in BIOSTAT-CHF (P=0.004) but not in MEDIA-DHF. CONCLUSIONS Higher circulating levels of the endothelial glycocalyx degradation biomarkers like perlecan and, to a lesser extent, thrombomodulin are associated with features of diastolic dysfunction in population and HFpEF settings and predict poor outcome in patients with HFpEF. These results suggest that glycocalyx degradation may be an early step in the pathological processes leading to HFpEF and gain further prognostic value in later stages (ie, overt HFpEF). REGISTRATION URL: https://clinicaltrials.gov/; Unique identifiers: NCT01391442, https://clinicaltrials.gov/study/NCT01391442?cond=stanislas&rank=1; NCT02446327; URL: https://cordis.europa.eu; BIOSTAT-CHF ID: 242209.
Collapse
Affiliation(s)
- Jeremy Lagrange
- Université de Lorraine, INSERM, DCAC Nancy France
- CHRU Nancy Vandœuvre-lès-Nancy France
| | | | - Guillaume Baudry
- Université de Lorraine, INSERM, DCAC Nancy France
- Centre d'Investigation Clinique-Plurithématique (CIC-P) 14-33, CHRU Nancy, INSERM Université de Lorraine Nancy France
- Cardiovascular and Renal Clinical Trialists network (INI-CRCT) French Clinical Research Infrastructure Network (F-CRIN) Vandœuvre-lès-Nancy France
- REICATRA, Recherche et Enseignement en IC Avancée, Transplantation, Assistance Vandœuvre-lès-Nancy France
| | | | - Luca Monzo
- Université de Lorraine, INSERM, DCAC Nancy France
- Centre d'Investigation Clinique-Plurithématique (CIC-P) 14-33, CHRU Nancy, INSERM Université de Lorraine Nancy France
- Cardiovascular and Renal Clinical Trialists network (INI-CRCT) French Clinical Research Infrastructure Network (F-CRIN) Vandœuvre-lès-Nancy France
| | - Zohra Lamiral
- Centre d'Investigation Clinique-Plurithématique (CIC-P) 14-33, CHRU Nancy, INSERM Université de Lorraine Nancy France
- Cardiovascular and Renal Clinical Trialists network (INI-CRCT) French Clinical Research Infrastructure Network (F-CRIN) Vandœuvre-lès-Nancy France
| | - Kévin Duarte
- Centre d'Investigation Clinique-Plurithématique (CIC-P) 14-33, CHRU Nancy, INSERM Université de Lorraine Nancy France
- Cardiovascular and Renal Clinical Trialists network (INI-CRCT) French Clinical Research Infrastructure Network (F-CRIN) Vandœuvre-lès-Nancy France
| | - Jozine M Ter Maaten
- Department of Cardiology University of Groningen, University Medical Centre Groningen Groningen Netherlands
| | - Faiez Zannad
- Université de Lorraine, INSERM, DCAC Nancy France
- Centre d'Investigation Clinique-Plurithématique (CIC-P) 14-33, CHRU Nancy, INSERM Université de Lorraine Nancy France
- Cardiovascular and Renal Clinical Trialists network (INI-CRCT) French Clinical Research Infrastructure Network (F-CRIN) Vandœuvre-lès-Nancy France
| | - Adriaan A Voors
- Department of Cardiology University of Groningen, University Medical Centre Groningen Groningen Netherlands
| | - Nicolas Girerd
- Université de Lorraine, INSERM, DCAC Nancy France
- Centre d'Investigation Clinique-Plurithématique (CIC-P) 14-33, CHRU Nancy, INSERM Université de Lorraine Nancy France
- Cardiovascular and Renal Clinical Trialists network (INI-CRCT) French Clinical Research Infrastructure Network (F-CRIN) Vandœuvre-lès-Nancy France
| |
Collapse
|
2
|
Noels H, van der Vorst EPC, Rubin S, Emmett A, Marx N, Tomaszewski M, Jankowski J. Renal-Cardiac Crosstalk in the Pathogenesis and Progression of Heart Failure. Circ Res 2025; 136:1306-1334. [PMID: 40403103 DOI: 10.1161/circresaha.124.325488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 05/24/2025]
Abstract
Chronic kidney disease (CKD) represents a global health issue with a high socioeconomic impact. Beyond a progressive decline of kidney function, patients with CKD are at increased risk of cardiovascular diseases, including heart failure (HF) and sudden cardiac death. HF in CKD can manifest both as HF with reduced ejection fraction and HF with preserved ejection fraction, with the latter further increasing in relative importance in the more advanced stages of CKD. Typical cardiac remodeling characteristics in uremic cardiomyopathy include left ventricular hypertrophy, myocardial fibrosis, cardiac electrical dysregulation, capillary rarefaction, and microvascular dysfunction, which are triggered by increased cardiac preload, cardiac afterload, and preload and afterload-independent factors. The pathophysiological mechanisms underlying cardiac remodeling in CKD are multifactorial and include neurohormonal activation (with increased activation of the renin-angiotensin-aldosterone system, the sympathetic nervous system, and mineralocorticoid receptor signaling), cardiac steroid activation, mitochondrial dysfunction, inflammation, innate immune activation, and oxidative stress. Furthermore, disturbances in cardiac metabolism and calcium homeostasis, macrovascular and microvascular dysfunction, increased cellular profibrotic responses, the accumulation of uremic retention solutes, and mineral and bone disorders also contribute to cardiovascular disease and HF in CKD. Here, we review the current knowledge of HF in CKD, including the clinical characteristics and pathophysiological mechanisms revealed in animal studies. We also elaborate on the detrimental impact of comorbidities of CKD on HF using hypertension as an example and discuss the clinical characteristics of hypertensive heart disease and the genetic predisposition. Overall, this review aims to increase the understanding of HF in CKD to support future research and clinical translational approaches for improved diagnosis and therapy of this vulnerable patient population.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Biochemistry Department (H.N.), Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Interdisciplinary Center for Clinical Research (IZKF) (E.P.C.v.d.V.), RWTH Aachen University, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (E.P.C.v.d.V.)
| | - Sébastien Rubin
- L'Institut national de la santé et de la recherche médicale (INSERM), BMC, U1034, University of Bordeaux, Pessac, France (S.R.)
- Renal Unit, University Hospital of Bordeaux, France (S.R.)
| | - Amber Emmett
- Faculty of Medicine, Biology and Health, Division of Cardiovascular Sciences, The University of Manchester, United Kingdom (A.E., M.T.)
| | - Nikolaus Marx
- Department of Internal Medicine I-Cardiology, Angiology and Internal Intensive Care Medicine (N.M.), RWTH Aachen University, Germany
| | - Maciej Tomaszewski
- Faculty of Medicine, Biology and Health, Division of Cardiovascular Sciences, The University of Manchester, United Kingdom (A.E., M.T.)
- British Heart Foundation Manchester Centre of Research Excellence, United Kingdom (M.T.)
- Manchester Academic Health Science Centre, Manchester University National Health Service (NHS) Foundation Trust, United Kingdom (M.T.)
- Signature Research Programme in Health Services and Systems Research, Duke-National University of Singapore (M.T.)
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (H.N., E.P.C.v.d.V., J.J.), Uniklinik RWTH Aachen, RWTH Aachen University, Germany
- Biochemistry Department (H.N.), Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
- Pathology Department (J.J.), Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| |
Collapse
|
3
|
Pasut A, Lama E, Van Craenenbroeck AH, Kroon J, Carmeliet P. Endothelial cell metabolism in cardiovascular physiology and disease. Nat Rev Cardiol 2025:10.1038/s41569-025-01162-x. [PMID: 40346347 DOI: 10.1038/s41569-025-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Endothelial cells are multifunctional cells that form the inner layer of blood vessels and have a crucial role in vasoreactivity, angiogenesis, immunomodulation, nutrient uptake and coagulation. Endothelial cells have unique metabolism and are metabolically heterogeneous. The microenvironment and metabolism of endothelial cells contribute to endothelial cell heterogeneity and metabolic specialization. Endothelial cell dysfunction is an early event in the development of several cardiovascular diseases and has been shown, at least to some extent, to be driven by metabolic changes preceding the manifestation of clinical symptoms. Diabetes mellitus, hypertension, obesity and chronic kidney disease are all risk factors for cardiovascular disease. Changes in endothelial cell metabolism induced by these cardiometabolic stressors accelerate the accumulation of dysfunctional endothelial cells in tissues and the development of cardiovascular disease. In this Review, we discuss the diversity of metabolic programmes that control endothelial cell function in the cardiovascular system and how these metabolic programmes are perturbed in different cardiovascular diseases in a disease-specific manner. Finally, we discuss the potential and challenges of targeting endothelial cell metabolism for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Lama
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Jeffrey Kroon
- Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, The Netherlands.
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Hao J, Wang M, Wu Q, Song T, Hao Y, Chang L, Hou Y, Jia Z. Deciphering the molecular mechanisms of QLQX capsules in heart failure: A multi-omics perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156828. [PMID: 40378592 DOI: 10.1016/j.phymed.2025.156828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
PURPOSE This study investigates the therapeutic mechanisms of Qiliqiangxin (QLQX) capsules in treating Heart Failure with Preserved Ejection Fraction (HFpEF). The study aims to understand how QLQX impacts cardiac function and underlying molecular pathways. METHODS HFpEF was induced in a rat model through unilateral nephrectomy, DOCA pellet implantation, and a high-salt diet. Cardiac function was assessed via M-mode imaging and Doppler flow measurements, focusing on key parameters like ejection fraction and diastolic function. A network pharmacology approach identified active QLQX components and potential targets, followed by comprehensive multi-omics analyses-including transcriptomics, proteomics, and metabolomics-to uncover the molecular mechanisms modulated by QLQX. Quantitative RT-PCR was employed to measure mRNA levels of key cardiac markers, providing further insights into QLQX's impact on cardiac remodeling. RESULTS QLQX treatment significantly improved cardiac function, with notable enhancements in ejection fraction and left ventricular diastolic function. Network pharmacology revealed 530 potential targets of QLQX, with 38 overlapping HFpEF targets. Key pathways identified include cGMP-PKG, adrenergic signaling, and calcium signaling. Transcriptomic analysis showed significant gene expression changes related to inflammation, energy metabolism, and myocardial remodeling, which were reversed by QLQX. Proteomic analysis identified 401 differentially expressed proteins, enriched in pathways such as cGMP-PKG and NF-κB signaling. Metabolomic profiling highlighted the role of lipid metabolism and adrenergic signaling in HFpEF, which were normalized by QLQX. In vivo validation confirmed the involvement of the cGMP-PKG pathway, with increased serum NO and cGMP levels, improved endothelial function, and reduced pro-fibrotic markers following QLQX treatment. CONCLUSION QLQX exerts multifaceted therapeutic effects on HFpEF by modulating gene expression, protein function, and metabolic pathways, particularly through the cGMP-PKG signaling pathway. These findings support QLQX as a promising therapeutic intervention for HFpEF, offering improvements in cardiac function and reversing pathological changes at multiple molecular levels.
Collapse
Affiliation(s)
- Jiameng Hao
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| | - Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Qiulan Wu
- Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, No.238, South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Yuanyuan Hao
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, No.238, South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Liping Chang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China; Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China; Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei, China.
| | - Zhenhua Jia
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, No.238, South of Tianshan Street, Shijiazhuang 050035, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei, China; Hebei Yiling Hospital, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
5
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
6
|
Zhou L, Kuang SQ, Lv Y, Yu WM, Wei XB, Lin S. Effect of proton pump inhibitor (lansoprazole) on adverse drug reactions and rational drug use in elderly patients with chronic heart failure. Am J Transl Res 2025; 17:1290-1301. [PMID: 40092076 PMCID: PMC11909537 DOI: 10.62347/bzed8420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025]
Abstract
OBJECTIVE To evaluate the efficacy and rationale of proton pump inhibitors (PPIs) for adverse drug reactions in elderly patients with heart failure (HF). METHODS From February 2019 to September 2021, 120 elderly patients with chronic heart failure (CHF) treated at Jintan First People's Hospital were enrolled as subjects. The patients were classified into a control group (n=60) and a research group (n=60). In addition to clopidogrel, the control group received cimetidine, while the research group received lansoprazole. Clinical efficacy, oxidative stress markers, echocardiographic indices, vascular endothelial function, cardiac function indicators, and adverse reactions were compared between the two groups. A cost-effectiveness analysis was also performed, and risk factors affecting patient efficacy were examined. RESULTS The clinical efficacy of the research group was remarkably superior to that of the control group (88.33% versus 63.33%, P<0.05). The combination of clopidogrel and cimetidine was identified as a risk factor affecting patient efficacy (P=0.003). Besides, the research group showed significant elevation in superoxide dismutase (SOD), glutathione peroxidase (GPx), left ventricular ejection fraction (LVEF), and nitric oxide (NO) after treatment, all higher compared to the control group (all P<0.05). Additionally, significant reductions in malondialdehyde (MDA), left ventricular end diastolic diameter (LVEDD), left ventricular end systolic dimension (LVSD), endothelin-1 (ET-1), N-terminal pro-B-type natriuretic peptide (NT-proBNP), creatine kinase (CK), lactate dehydrogenase (LDH), and free fatty acids (FFA) were observed in the research group, all lower than the control group (P<0.05). The incidence of bradycardia, hypotension and electrolyte disturbances in the research group was remarkably lower (P<0.05). Additionally, the research group demonstrated greater cost-effectiveness compared to the control group. CONCLUSION The use of PPIs in elderly patients with HF not only improves efficacy but also enhances safety, making this drug treatment approach worth promoting.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Cardiology, Jintan First People's Hospital Changzhou 213200, Jiangsu, China
| | - Su-Qing Kuang
- Department of Geriatrics, Dongfang Hospital Affiliated to Tongji University, Jiaozhou Hospital Jiaozhou 266318, Shandong, China
| | - Yuan Lv
- Department of Cardiology, Jintan First People's Hospital Changzhou 213200, Jiangsu, China
| | - Wen-Min Yu
- Department of Cardiology, Jintan First People's Hospital Changzhou 213200, Jiangsu, China
| | - Xiao-Bing Wei
- Department of Cardiology, Jintan First People's Hospital Changzhou 213200, Jiangsu, China
| | - Song Lin
- Department of Cardiology, Nanjing Medical University Affiliated Nanjing Hospital Nanjing 210006, Jiangsu, China
| |
Collapse
|
7
|
Singh A, Ashraf S, Irfan H, Venjhraj F, Verma A, Shaukat A, Tariq MD, Hamza HM. Heart failure and microvascular dysfunction: an in-depth review of mechanisms, diagnostic strategies, and innovative therapies. Ann Med Surg (Lond) 2025; 87:616-626. [PMID: 40110322 PMCID: PMC11918592 DOI: 10.1097/ms9.0000000000002971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 03/22/2025] Open
Abstract
Microvascular dysfunction (MVD) is increasingly recognized as a critical contributor to the pathogenesis of heart failure (HF), particularly in heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). Coronary microvascular dysfunction (CMD) significantly impacts HFpEF by reducing coronary flow reserve and myocardial perfusion reserve, leading to adverse outcomes such as myocardial ischemia, diastolic dysfunction, and increased risk of major cardiovascular events, including atrial fibrillation. In HFrEF, microvascular impairment is linked to heightened oxidative stress, reduced nitric oxide production, and activation of the renin-angiotensin-aldosterone system, further driving disease progression and contributing to poor prognosis. Advancements in diagnostic techniques, such as positron emission tomography, cardiac magnetic resonance imaging, and biomarker analysis, improve our ability to assess CMD in heart failure patients, enabling earlier diagnosis and risk stratification. Emerging therapies, including sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, and endothelial-targeted interventions, enhance microvascular function and improve patient outcomes. The role of personalized medicine is becoming increasingly important, as individualized therapeutic approaches tailored to patient-specific microvascular abnormalities are essential for optimizing treatment effectiveness. This review underscores the pivotal role of MVD in HF. It highlights the urgent need for innovative therapeutic strategies and diagnostic tools to address this complex condition and improve clinical outcomes for HF patients.
Collapse
Affiliation(s)
- Ajeet Singh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Saad Ashraf
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hamza Irfan
- Department of Ophthalmology, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - Fnu Venjhraj
- Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Amogh Verma
- SR Sanjeevani Hospital, Kalyanpur, Siraha, Nepal
| | - Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Daoud Tariq
- Department of Internal Medicine, Foundation University Medical College, Islamabad, Pakistan
| | | |
Collapse
|
8
|
Museedi AS, Samson R, Le Jemtel TH. Menopause, epicardial adiposity and preserved ejection fraction heart failure. Int J Cardiol 2024; 415:132478. [PMID: 39179034 DOI: 10.1016/j.ijcard.2024.132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Postmenopausal women are overrepresented in the preserved ejection heart failure population. Expansion of visceral and epicardial adipose tissue during the menopause transition leads to local and low-grade systemic inflammation that in turn contributes to left ventricular concentric remodeling, diastolic dysfunction and the development and progression of preserved ejection fraction. In contrast to visceral adipose tissue imaging, epicardial adipose tissue can be inexpensively imaged on low radiation coronary calcium score computerized tomography examination. The menopause transition provides a unique time frame to evaluate the contribution of epicardial adipose tissue expansion to the pathogenesis of preserved ejection heart failure.
Collapse
Affiliation(s)
- Abdulrahman S Museedi
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States of America
| | - Rohan Samson
- Advanced Heart Failure Therapies Program, University of Louisville Health-Jewish Hospital, 201 Abraham Flexner Way, Suite 1001, Louisville, KY 40202, United States of America
| | - Thierry H Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States of America.
| |
Collapse
|
9
|
Tatekoshi Y, Chen C, Shapiro JS, Chang HC, Blancard M, Lyra-Leite DM, Burridge PW, Feinstein M, D'Aquila R, Hsue P, Ardehali H. Human induced pluripotent stem cell-derived cardiomyocytes to study inflammation-induced aberrant calcium transient. eLife 2024; 13:RP95867. [PMID: 39331464 PMCID: PMC11434618 DOI: 10.7554/elife.95867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is commonly found in persons living with HIV (PLWH) even when antiretroviral therapy suppresses HIV viremia. However, studying this condition has been challenging because an appropriate animal model is not available. In this article, we studied calcium transient in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in culture to simulate the cardiomyocyte relaxation defect noted in PLWH and HFpEF and assess whether various drugs have an effect. We show that treatment of hiPSC-CMs with inflammatory cytokines (such as interferon-γ or TNF-α) impairs their Ca2+ uptake into sarcoplasmic reticulum and that SGLT2 inhibitors, clinically proven as effective for HFpEF, reverse this effect. Additionally, treatment with mitochondrial antioxidants (like mito-Tempo) and certain antiretrovirals resulted in the reversal of the effects of these cytokines on calcium transient. Finally, incubation of hiPSC-CMs with serum from HIV patients with and without diastolic dysfunction did not alter their Ca2+-decay time, indicating that the exposure to the serum of these patients is not sufficient to induce the decrease in Ca2+ uptake in vitro. Together, our results indicate that hiPSC-CMs can be used as a model to study molecular mechanisms of inflammation-mediated abnormal cardiomyocyte relaxation and screen for potential new interventions.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Chunlei Chen
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Matthew Feinstein
- Department of Medicine, Northwestern University, Chicago, United States
| | - Richard D'Aquila
- Department of Medicine, Northwestern University, Chicago, United States
| | - Priscilla Hsue
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
- Department of Pharmacology, Northwestern University, Chicago, United States
- Department of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
10
|
López-Palop R, Carrillo P, Lozano Í. Impact of Sex in the Incidence of Heart Failure in Patients with Chronic Coronary Syndrome. Curr Heart Fail Rep 2024; 21:354-366. [PMID: 38703306 DOI: 10.1007/s11897-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW This review examines the available evidence concerning the incidence of heart failure in patients with chronic coronary syndrome, with a focus on gender differences. RECENT FINDINGS The incidence of heart failure in the context of chronic coronary syndrome presents conflicting data. Most of the available information stems from studies involving stable patients' post-acute coronary syndrome, revealing a wide range of incidence rates, from less than 3% to over 20%, observed over 5 years of follow-up. Regarding the gender differences in heart failure incidence, there is no consensus about whether women exhibit a higher incidence, particularly in the presence of evidence of obstructive coronary artery disease. However, in cases where obstructive coronary artery disease is absent, women may face a more unfavourable prognosis due to a higher prevalence of microvascular disease and heart failure with preserved ventricular function. The different profile of ischaemic heart disease in women difficult to establish differences in prognosis independently associated with female sex. Targeted investigations are essential to discern the incidence of heart failure in chronic coronary syndrome and explore potential gender-specific associations.
Collapse
Affiliation(s)
- Ramón López-Palop
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Murcia-Cartagena s/n. 30120, Murcia, Spain.
| | - Pilar Carrillo
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Murcia-Cartagena s/n. 30120, Murcia, Spain
| | - Íñigo Lozano
- Servicio de Cardiología, Hospital Universitario de Cabueñes, Gijón, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Schinzari F, Tesauro M, Cardillo C. Is endothelin targeting finally ready for prime time? Clin Sci (Lond) 2024; 138:635-644. [PMID: 38785409 DOI: 10.1042/cs20240607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention. Of recent, however, an expanding understanding of the pathophysiological processes involving endothelin, in conjunction with the development of new antagonists of endothelin receptors or adjustment of their doses, has driven a flourish of new clinical trials. The favorable results of some of them have extended the proven indications for ET targeting to a variety of clinical conditions, including resistant arterial hypertension and glomerulopathies. In addition, on the ground of strong preclinical evidence, other studies are ongoing to test the potential benefits of ERA in combination with other treatments, such as sodium-glucose co-transporter 2 inhibition in fluid retentive states or anti-cancer therapies in solid tumors. Furthermore, antibodies providing long-term blockade of endothelin receptors are under testing to overcome the short half-life of most small molecule endothelin antagonists. These efforts may yet bring new life to the translation of endothelin targeting strategies in clinical practice.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, Università Tor Vergata, Roma, Italy
| | - Carmine Cardillo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
12
|
Oraii A, Chaumont C, Marchlinski FE, Hyman MC. Rate-adaptive pacing in heart failure with preserved ejection fraction: Too much of a good thing? Heart Rhythm O2 2024; 5:334-337. [PMID: 38840761 PMCID: PMC11148503 DOI: 10.1016/j.hroo.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Affiliation(s)
- Alireza Oraii
- Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corentin Chaumont
- Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Francis E. Marchlinski
- Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew C. Hyman
- Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Lin YH, Sung KT, Tsai CT, Lai YH, Lo CI, Yu FC, Lan WR, Hung TC, Kuo JY, Hou CJY, Yen CH, Peng MC, Yeh HI, Wu MT, Hung CL. Preclinical systolic dysfunction relating to ankle-brachial index among high-risk PAD population with preserved left ventricular ejection fraction. Sci Rep 2024; 14:6145. [PMID: 38480756 PMCID: PMC10937714 DOI: 10.1038/s41598-024-52375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Peripheral artery disease (PAD) shares common clinical risk factors, for example, endothelial dysfunction, with preserved ejection fraction (LVEF) heart failure (HFpEF). Whether PAD is associated with preclinical systolic dysfunction and higher HF risk among individuals presenting preserved LVEF remains uncertain. We retrospectively included outpatients with at least one known or established cardiovascular (CV) risk factor with LVEF ≥ 50%. Patients were categorized into high risk and low risk of developing PAD (PAD vs Non-PAD) by ankle-brachial index (ABI) (≤ 0.90 or > 1.4) and further stratified based on their history of HFpEF (HFpEF vs. Non-HFpEF), resulting in the formation of four distinct strata. Preclinical systolic dysfunction was defined using dedicated speckle-tracking algorithm. A total of 2130 consecutive patients were enrolled in the study, with a median follow-up of 4.4 years. The analysis revealed a higher prevalence of high risk of developing PAD in patients with HFpEF compared to those without HFpEF (25.1% vs. 9.4%). Both high risk of developing PAD and HFpEF were independently associated with preclinical systolic dysfunction (global longitudinal strain, GLS ≥ - 18%) (odds ratio, OR: 1.38; 95% confidence interval, CI: 1.03-1.86). In comparison to patients at low risk of developing PAD without HFpEF (Non-PAD/Non-HFpEF group), those categorized as having a high risk of developing PAD with HFpEF (PAD/HFpEF group) exhibited the most impaired GLS and a heightened susceptibility to heart failure hospitalization (hazard ratio, HR: 6.51; 95% CI: 4.43-9.55), a twofold increased risk of all-cause mortality (HR: 2.01; 95% CI: 1.17-3.38), cardiovascular mortality (HR: 2.44; 95% CI: 1.08-5.51), and non-cardiovascular mortality (HR: 1.78; 95% CI: 0.82-3.84). A high risk of developing PAD was strongly linked to impaired preclinical systolic function and an increased likelihood for subsequent hospitalization for HF, all-cause mortality, CV mortality and non-CV mortality. There is a clear need for preventive strategies aimed at reducing hospitalizations for HF and mortality in this high-risk population.
Collapse
Grants
- Grants NSC-101-2314-B-195-020 Ministry of Science and Technology, Taiwan
- NSC103-2314-B-010-005-MY3 Ministry of Science and Technology, Taiwan
- 103-2314-B-195-001-MY3 Ministry of Science and Technology, Taiwan
- 101-2314-B-195-020-MY1 Ministry of Science and Technology, Taiwan
- MOST 103-2314-B-195-006-MY3 Ministry of Science and Technology, Taiwan
- NSC102-2314-B-002-046-MY3 Ministry of Science and Technology, Taiwan
- 106-2314-B-195-008-MY2 Ministry of Science and Technology, Taiwan
- 108-2314-B-195-018-MY2 Ministry of Science and Technology, Taiwan
- MOST 108-2314-B-195-018-MY2 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-715-008 Ministry of Science and Technology, Taiwan
- MOST 110-2314-B-715-009-MY1 Ministry of Science and Technology, Taiwan
- 10271 Mackay Memorial Hospital
- 10248 Mackay Memorial Hospital
- 10220 Mackay Memorial Hospital
- 10253 Mackay Memorial Hospital
- 10375 Mackay Memorial Hospital
- 10358 Mackay Memorial Hospital
- E-102003 Mackay Memorial Hospital
- Taiwan Foundation for geriatric emergency and critical care
Collapse
Affiliation(s)
- Yueh-Hung Lin
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuo-Tzu Sung
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ting Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei City, 11260, Taiwan
| | - Yau-Huei Lai
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsin-chu City, 30071, Taiwan
| | - Chi-In Lo
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Fa-Chang Yu
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Wei-Ran Lan
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Ta-Chuan Hung
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Yuan Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Charles Jia-Yin Hou
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hsuan Yen
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Cheng Peng
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan
| | - Ming-Ting Wu
- School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
- Mackay Junior College of Medicine, Nursing, and Management, Taipei City, 11260, Taiwan.
- Department of Radiology, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1St Road, Kao-hsiung City, 81362, Taiwan.
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Chung-Lieh Hung
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Road, Taipei, 10449, Taiwan.
| |
Collapse
|
14
|
Alves PKN, Schauer A, Augstein A, Prieto Jarabo ME, Männel A, Barthel P, Vahle B, Moriscot AS, Linke A, Adams V. Leucine Supplementation Prevents the Development of Skeletal Muscle Dysfunction in a Rat Model of HFpEF. Cells 2024; 13:502. [PMID: 38534346 PMCID: PMC10969777 DOI: 10.3390/cells13060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with exercise intolerance due to alterations in the skeletal muscle (SKM). Leucine supplementation is known to alter the anabolic/catabolic balance and to improve mitochondrial function. Thus, we investigated the effect of leucine supplementation in both a primary and a secondary prevention approach on SKM function and factors modulating muscle function in an established HFpEF rat model. Female ZSF1 obese rats were randomized to an untreated, a primary prevention, and a secondary prevention group. For primary prevention, leucine supplementation was started before the onset of HFpEF (8 weeks of age) and for secondary prevention, leucine supplementation was started after the onset of HFpEF (20 weeks of age). SKM function was assessed at an age of 32 weeks, and SKM tissue was collected for the assessment of mitochondrial function and histological and molecular analyses. Leucine supplementation prevented the development of SKM dysfunction whereas it could not reverse it. In the primary prevention group, mitochondrial function improved and higher expressions of mitofilin, Mfn-2, Fis1, and miCK were evident in SKM. The expression of UCP3 was reduced whereas the mitochondrial content and markers for catabolism (MuRF1, MAFBx), muscle cross-sectional area, and SKM mass did not change. Our data show that leucine supplementation prevented the development of skeletal muscle dysfunction in a rat model of HFpEF, which may be mediated by improving mitochondrial function through modulating energy transfer.
Collapse
Affiliation(s)
- Paula Ketilly Nascimento Alves
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anita Männel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| |
Collapse
|
15
|
Gallo G, Savoia C. New Insights into Endothelial Dysfunction in Cardiometabolic Diseases: Potential Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:2973. [PMID: 38474219 DOI: 10.3390/ijms25052973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The endothelium is a monocellular layer covering the inner surface of blood vessels. It maintains vascular homeostasis regulating vascular tone and permeability and exerts anti-inflammatory, antioxidant, anti-proliferative, and anti-thrombotic functions. When the endothelium is exposed to detrimental stimuli including hyperglycemia, hyperlipidemia, and neurohormonal imbalance, different biological pathways are activated leading to oxidative stress, endothelial dysfunction, increased secretion of adipokines, cytokines, endothelin-1, and fibroblast growth factor, and reduced nitric oxide production, leading eventually to a loss of integrity. Endothelial dysfunction has emerged as a hallmark of dysmetabolic vascular impairment and contributes to detrimental effects on cardiac metabolism and diastolic dysfunction, and to the development of cardiovascular diseases including heart failure. Different biomarkers of endothelial dysfunction have been proposed to predict cardiovascular diseases in order to identify microvascular and macrovascular damage and the development of atherosclerosis, particularly in metabolic disorders. Endothelial dysfunction also plays an important role in the development of severe COVID-19 and cardiovascular complications in dysmetabolic patients after SARS-CoV-2 infection. In this review, we will discuss the biological mechanisms involved in endothelial dysregulation in the context of cardiometabolic diseases as well as the available and promising biomarkers of endothelial dysfunction in clinical practice.
Collapse
Affiliation(s)
- Giovanna Gallo
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| |
Collapse
|
16
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
17
|
Kalies K, Knöpp K, Wurmbrand L, Korte L, Dutzmann J, Pilowski C, Koch S, Sedding D. Isolation of circulating endothelial cells provides tool to determine endothelial cell senescence in blood samples. Sci Rep 2024; 14:4271. [PMID: 38383692 PMCID: PMC10882010 DOI: 10.1038/s41598-024-54455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Circulating endothelial cells (CEC) are arising as biomarkers for vascular diseases. However, whether they can be utilized as markers of endothelial cell (EC) senescence in vivo remains unknown. Here, we present a protocol to isolate circulating endothelial cells for a characterization of their senescent signature. Further, we characterize different models of EC senescence induction in vitro and show similar patterns of senescence being upregulated in CECs of aged patients as compared to young volunteers. Replication-(ageing), etoposide-(DNA damage) and angiotensin II-(ROS) induced senescence models showed the expected cell morphology and proliferation-reduction effects. Expression of senescence-associated secretory phenotype markers was specifically upregulated in replication-induced EC senescence. All models showed reduced telomere lengths and induction of the INK4a/ARF locus. Additional p14ARF-p21 pathway activation was observed in replication- and etoposide-induced EC senescence. Next, we established a combined magnetic activated- and fluorescence activated cell sorting (MACS-FACS) based protocol for CEC isolation. Interestingly, CECs isolated from aged volunteers showed similar senescence marker patterns as replication- and etoposide-induced senescence models. Here, we provide first proof of senescence in human blood derived circulating endothelial cells. These results hint towards an exciting future of using CECs as mirror cells for in vivo endothelial cell senescence, of particular interest in the context of endothelial dysfunction and cardiovascular diseases.
Collapse
Affiliation(s)
- Katrin Kalies
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany.
| | - Kai Knöpp
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Leonie Wurmbrand
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Laura Korte
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625, Hannover, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Claudia Pilowski
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Susanne Koch
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| |
Collapse
|
18
|
Zhang Z, Sun M, Jiang W, Yu L, Zhang C, Ma H. Myocardial Metabolic Reprogramming in HFpEF. J Cardiovasc Transl Res 2024; 17:121-132. [PMID: 37650988 DOI: 10.1007/s12265-023-10433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Mingchu Sun
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
19
|
Rouault P, Guimbal S, Cornuault L, Bourguignon C, Foussard N, Alzieu P, Choveau F, Benoist D, Chapouly C, Gadeau AP, Couffinhal T, Renault MA. Thrombosis in the Coronary Microvasculature Impairs Cardiac Relaxation and Induces Diastolic Dysfunction. Arterioscler Thromb Vasc Biol 2024; 44:e1-e18. [PMID: 38031839 DOI: 10.1161/atvbaha.123.320040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is proposed to be caused by endothelial dysfunction in cardiac microvessels. Our goal was to identify molecular and cellular mechanisms underlying the development of cardiac microvessel disease and diastolic dysfunction in the setting of type 2 diabetes. METHODS We used Leprdb/db (leptin receptor-deficient) female mice as a model of type 2 diabetes and heart failure with preserved ejection fraction and identified Hhipl1 (hedgehog interacting protein-like 1), which encodes for a decoy receptor for HH (hedgehog) ligands as a gene upregulated in the cardiac vascular fraction of diseased mice. RESULTS We then used Dhh (desert HH)-deficient mice to investigate the functional consequences of impaired HH signaling in the adult heart. We found that Dhh-deficient mice displayed increased end-diastolic pressure while left ventricular ejection fraction was comparable to that of control mice. This phenotype was associated with a reduced exercise tolerance in the treadmill test, suggesting that Dhh-deficient mice do present heart failure. At molecular and cellular levels, impaired cardiac relaxation in DhhECKO mice was associated with a significantly decreased PLN (phospholamban) phosphorylation on Thr17 (threonine 17) and an alteration of sarcomeric shortening ex vivo. Besides, as expected, Dhh-deficient mice exhibited phenotypic changes in their cardiac microvessels including a prominent prothrombotic phenotype. Importantly, aspirin therapy prevented the occurrence of both diastolic dysfunction and exercise intolerance in these mice. To confirm the critical role of thrombosis in the pathophysiology of diastolic dysfunction, we verified Leprdb/db also displays increased cardiac microvessel thrombosis. Moreover, consistently, with Dhh-deficient mice, we found that aspirin treatment decreased end-diastolic pressure and improved exercise tolerance in Leprdb/db mice. CONCLUSIONS Altogether, these results demonstrate that microvessel thrombosis may participate in the pathophysiology of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Paul Rouault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Sarah Guimbal
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Lauriane Cornuault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Célia Bourguignon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Ninon Foussard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Philippe Alzieu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Frank Choveau
- INSERM U1045, CRCTB (Centre de recherche cardio-thoracique de Bordeaux), IHU Liryc (Institut Hospitalo Universitaire des maladies du rythme cardiaque), University of Bordeaux, France (F.C., D.B.)
| | - David Benoist
- INSERM U1045, CRCTB (Centre de recherche cardio-thoracique de Bordeaux), IHU Liryc (Institut Hospitalo Universitaire des maladies du rythme cardiaque), University of Bordeaux, France (F.C., D.B.)
| | - Candice Chapouly
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Alain-Pierre Gadeau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Thierry Couffinhal
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Marie-Ange Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| |
Collapse
|
20
|
Zdravkovic M, Popadic V, Klasnja S, Klasnja A, Ivankovic T, Lasica R, Lovic D, Gostiljac D, Vasiljevic Z. Coronary Microvascular Dysfunction and Hypertension: A Bond More Important than We Think. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2149. [PMID: 38138252 PMCID: PMC10744540 DOI: 10.3390/medicina59122149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a clinical entity linked with various risk factors that significantly affect cardiac morbidity and mortality. Hypertension, one of the most important, causes both functional and structural alterations in the microvasculature, promoting the occurrence and progression of microvascular angina. Endothelial dysfunction and capillary rarefaction play the most significant role in the development of CMD among patients with hypertension. CMD is also related to several hypertension-induced morphological and functional changes in the myocardium in the subclinical and early clinical stages, including left ventricular hypertrophy, interstitial myocardial fibrosis, and diastolic dysfunction. This indicates the fact that CMD, especially if associated with hypertension, is a subclinical marker of end-organ damage and heart failure, particularly that with preserved ejection fraction. This is why it is important to search for microvascular angina in every patient with hypertension and chest pain not associated with obstructive coronary artery disease. Several highly sensitive and specific non-invasive and invasive diagnostic modalities have been developed to evaluate the presence and severity of CMD and also to investigate and guide the treatment of additional complications that can affect further prognosis. This comprehensive review provides insight into the main pathophysiological mechanisms of CMD in hypertensive patients, offering an integrated diagnostic approach as well as an overview of currently available therapeutical modalities.
Collapse
Affiliation(s)
- Marija Zdravkovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| | - Viseslav Popadic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Slobodan Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Andrea Klasnja
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Tatjana Ivankovic
- Clinic for Internal Medicine, University Clinical Hospital Center Bezanijska Kosa, 11000 Belgrade, Serbia; (M.Z.); (S.K.); (A.K.); (T.I.)
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Cardiology, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Dragan Lovic
- Clinic for Internal Diseases Inter Medica, 18000 Nis, Serbia;
- School of Medicine, Singidunum University, 18000 Nis, Serbia
| | - Drasko Gostiljac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Zorana Vasiljevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (D.G.); (Z.V.)
| |
Collapse
|
21
|
Winters J, Isaacs A, Zeemering S, Kawczynski M, Maesen B, Maessen J, Bidar E, Boukens B, Hermans B, van Hunnik A, Casadei B, Fabritz L, Chua W, Sommerfeld L, Guasch E, Mont L, Batlle M, Hatem S, Kirchhof P, Wakili R, Sinner M, Stoll M, Goette A, Verheule S, Schotten U. Heart Failure, Female Sex, and Atrial Fibrillation Are the Main Drivers of Human Atrial Cardiomyopathy: Results From the CATCH ME Consortium. J Am Heart Assoc 2023; 12:e031220. [PMID: 37982389 PMCID: PMC10727294 DOI: 10.1161/jaha.123.031220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Atrial cardiomyopathy (atCM) is an emerging prognostic factor in cardiovascular disease. Fibrotic remodeling, cardiomyocyte hypertrophy, and capillary density are hallmarks of atCM. The contribution of etiological factors and atrial fibrillation (AF) to the development of differential atCM phenotypes has not been quantified. This study aimed to evaluate the association between histological features of atCM and the clinical phenotype. METHODS AND RESULTS We examined left atrial (LA, n=95) and right atrial (RA, n=76) appendages from a European cohort of patients undergoing cardiac surgery. Quantification of histological atCM features was performed following wheat germ agglutinin/CD31/vimentin staining. The contributions of AF, heart failure, sex, and age to histological characteristics were determined with multiple linear regression models. Persistent AF was associated with increased endomysial fibrosis (LA: +1.13±0.47 μm, P=0.038; RA: +0.94±0.38 μm, P=0.041), whereas total extracellular matrix content was not. Men had larger cardiomyocytes (LA: +1.92±0.72 μm, P<0.001), while women had more endomysial fibrosis (LA: +0.99±0.56 μm, P=0.003). Patients with heart failure showed more endomysial fibrosis (LA: +1.85±0.48 μm, P<0.001) and extracellular matrix content (LA: +3.07±1.29%, P=0.016), and a higher capillary density (LA: +0.13±0.06, P=0.007) and size (LA: +0.46±0.22 μm, P=0.044). Fuzzy k-means clustering of histological features identified 2 subtypes of atCM: 1 characterized by enhanced endomysial fibrosis (LA: +3.17 μm, P<0.001; RA: +2.86 μm, P<0.001), extracellular matrix content (LA: +3.53%, P<0.001; RA: +6.40%, P<0.001) and fibroblast density (LA: +4.38%, P<0.001), and 1 characterized by cardiomyocyte hypertrophy (LA: +1.16 μm, P=0.008; RA: +2.58 μm, P<0.001). Patients with fibrotic atCM were more frequently female (LA: odds ratio [OR], 1.33, P=0.002; RA: OR, 1.54, P=0.004), with persistent AF (LA: OR, 1.22, P=0.036) or heart failure (LA: OR, 1.62, P<0.001). Hypertrophic features were more common in men (LA: OR=1.33, P=0.002; RA: OR, 1.54, P=0.004). CONCLUSIONS Fibrotic atCM is associated with female sex, persistent AF, and heart failure, while hypertrophic features are more common in men.
Collapse
Affiliation(s)
- Joris Winters
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
- Maastricht Centre for Systems BiologyUniversity MaastrichtMaastrichtThe Netherlands
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Michal Kawczynski
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Bart Maesen
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Jos Maessen
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Elham Bidar
- Department of Cardiothoracic SurgeryMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Bas Boukens
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Ben Hermans
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Arne van Hunnik
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Barbara Casadei
- Division of Cardiovascular Medicine, BHF Centre of Research ExcellenceUniversity of OxfordOxfordUnited Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
- University Center of Cardiovascular ScienceUKE HamburgHamburgGermany
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
| | - Winnie Chua
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
| | - Laura Sommerfeld
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
- University Center of Cardiovascular ScienceUKE HamburgHamburgGermany
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
| | - Eduard Guasch
- Institute of Biomedical Research August Pi Sunyer (IDIBAPS)BarcelonaSpain
| | - Luis Mont
- Clinic Barcelona, Universitat de BarcelonaBarcelonaSpain
| | - Montserrat Batlle
- Institute of Biomedical Research August Pi Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red—Cardiovascular (CIBERCV)MadridSpain
| | | | - Paulus Kirchhof
- Institute of Cardiovascular SciencesBirminghamUnited Kingdom
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
| | - Reza Wakili
- Department of Medicine and CardiologyGoethe UniversityFrankfurtGermany
| | - Mortiz Sinner
- University Heart and Vascular Center, University Hospital Hamburg EppendorfHamburgGermany
- DZHK, Standort Hamburg/Kiel/LübeckLübeckGermany
- Department of CardiologyUniversity Hospital of MunichMunichGermany
| | - Monica Stoll
- Maastricht Centre for Systems BiologyUniversity MaastrichtMaastrichtThe Netherlands
- Department of Biochemistry, Genetic Epidemiology and Statistical GeneticsUniversity MaastrichtMaastrichtThe Netherlands
- Department of Genetic Epidemiology, Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Andreas Goette
- Department of Cardiology and Intensive Care MedicineSt. Vincenz Hospital PaderbornPaderbornGermany
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute MaastrichtUniversity MaastrichtMaastrichtThe Netherlands
- Department of CardiologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
22
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
23
|
Jyotsna F, Mahfooz K, Sohail H, Kumar S, Adeeb M, Anand D, Kumar R, Rekha F, Varrassi G, Khatri M, Kumar S. Deciphering the Dilemma: Anticoagulation for Heart Failure With Preserved Ejection Fraction (HFpEF). Cureus 2023; 15:e43279. [PMID: 37692595 PMCID: PMC10492587 DOI: 10.7759/cureus.43279] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Impairment in ventricular relaxation and preserved left ventricular ejection fraction are the two main features of heart failure with preserved ejection fraction (HFpEF) a difficult clinical condition. Therapeutic choices for HFpEF patients are still scarce despite its rising frequency and negative effects on morbidity and mortality, necessitating creative methods to enhance results. The increased thromboembolic risk seen in these individuals raises questions about the relevance of anticoagulation in the therapy of HFpEF. Although anticoagulation has been shown to be beneficial in heart failure with decreased ejection fraction (HFrEF) and other high-risk cardiovascular disorders, its efficacy and safety in HFpEF present a challenging therapeutic challenge. Anticoagulants have been the subject of clinical trials in HFpEF, but the results have been conflicting, giving clinicians only a little information with which to make decisions. The decision-making process is made more difficult by worries about potential bleeding hazards, particularly in susceptible elderly HFpEF patients with other comorbidities. The link between heart failure and anticoagulant medication in HFpEF is thoroughly analyzed in this narrative review. In HFpEF, cardiac fibrosis and endothelial dysfunction create a prothrombotic milieu, as is highlighted in this passage. Also covered are recent developments in innovative biomarker research and cutting-edge imaging techniques, which may provide ways to spot HFpEF patients who might benefit from anticoagulation. This therapeutic conundrum may be resolved by using precision medicine strategies based on risk classification and individualized therapy choices. This review emphasizes the need for more research to establish the best use of anticoagulation in HFpEF within the framework of personalized therapy and shared decision-making. To successfully manage thromboembolic risk and reduce bleeding consequences in HFpEF patients, it is essential to perform well-designed clinical studies and advance our understanding of the pathophysiology of HFpEF. These developments may ultimately improve the prognosis and quality of life for people who suffer from this difficult and mysterious ailment.
Collapse
Affiliation(s)
- Fnu Jyotsna
- Medicine, Dr. Bhim Rao Ambedkar Medical College and Hospital, Sahibzada Ajit Singh Nagar, IND
| | - Kamran Mahfooz
- Internal Medicine, Lincoln Medical Center, New York City, USA
| | - Haris Sohail
- Medicine, Lincoln Medical Center, New York City, USA
| | - Sumeet Kumar
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Maham Adeeb
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Dev Anand
- Medicine, Bahria University Medical and Dental College, Karachi, USA
| | - Rahul Kumar
- Medicine, Liaquat University of Medical and Health Sciences, Karachi, PAK
| | - Fnu Rekha
- Medicine, Liaquat University of Medical and Health Sciences, Karachi, PAK
| | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| |
Collapse
|
24
|
Lanzer JD, Valdeolivas A, Pepin M, Hund H, Backs J, Frey N, Friederich HC, Schultz JH, Saez-Rodriguez J, Levinson RT. A network medicine approach to study comorbidities in heart failure with preserved ejection fraction. BMC Med 2023; 21:267. [PMID: 37488529 PMCID: PMC10367269 DOI: 10.1186/s12916-023-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Comorbidities are expected to impact the pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF). However, comorbidity profiles are usually reduced to a few comorbid disorders. Systems medicine approaches can model phenome-wide comorbidity profiles to improve our understanding of HFpEF and infer associated genetic profiles. METHODS We retrospectively explored 569 comorbidities in 29,047 HF patients, including 8062 HFpEF and 6585 HF with reduced ejection fraction (HFrEF) patients from a German university hospital. We assessed differences in comorbidity profiles between HF subtypes via multiple correspondence analysis. Then, we used machine learning classifiers to identify distinctive comorbidity profiles of HFpEF and HFrEF patients. Moreover, we built a comorbidity network (HFnet) to identify the main disease clusters that summarized the phenome-wide comorbidity. Lastly, we predicted novel gene candidates for HFpEF by linking the HFnet to a multilayer gene network, integrating multiple databases. To corroborate HFpEF candidate genes, we collected transcriptomic data in a murine HFpEF model. We compared predicted genes with the murine disease signature as well as with the literature. RESULTS We found a high degree of variance between the comorbidity profiles of HFpEF and HFrEF, while each was more similar to HFmrEF. The comorbidities present in HFpEF patients were more diverse than those in HFrEF and included neoplastic, osteologic and rheumatoid disorders. Disease communities in the HFnet captured important comorbidity concepts of HF patients which could be assigned to HF subtypes, age groups, and sex. Based on the HFpEF comorbidity profile, we predicted and recovered gene candidates, including genes involved in fibrosis (COL3A1, LOX, SMAD9, PTHL), hypertrophy (GATA5, MYH7), oxidative stress (NOS1, GSST1, XDH), and endoplasmic reticulum stress (ATF6). Finally, predicted genes were significantly overrepresented in the murine transcriptomic disease signature providing additional plausibility for their relevance. CONCLUSIONS We applied systems medicine concepts to analyze comorbidity profiles in a HF patient cohort. We were able to identify disease clusters that helped to characterize HF patients. We derived a distinct comorbidity profile for HFpEF, which was leveraged to suggest novel candidate genes via network propagation. The identification of distinctive comorbidity profiles and candidate genes from routine clinical data provides insights that may be leveraged to improve diagnosis and identify treatment targets for HFpEF patients.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Pepin
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Hauke Hund
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| |
Collapse
|
25
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
26
|
Stencel J, Alai HR, Dhore-patil A, Urina-Jassir D, Le Jemtel TH. Obesity, Preserved Ejection Fraction Heart Failure, and Left Ventricular Remodeling. J Clin Med 2023; 12:3341. [PMID: 37176781 PMCID: PMC10179420 DOI: 10.3390/jcm12093341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Owing to the overwhelming obesity epidemic, preserved ejection fraction heart failure commonly ensues in patients with severe obesity and the obese phenotype of preserved ejection fraction heart failure is now commonplace in clinical practice. Severe obesity and preserved ejection fraction heart failure share congruent cardiovascular, immune, and renal derangements that make it difficult to ascertain whether the obese phenotype of preserved ejection fraction heart failure is the convergence of two highly prevalent conditions or severe obesity enables the development and progression of the syndrome of preserved ejection fraction heart failure. Nevertheless, the obese phenotype of preserved ejection fraction heart failure provides a unique opportunity to assess whether sustained and sizeable loss of excess body weight via metabolic bariatric surgery reverses the concentric left ventricular remodeling that patients with preserved ejection fraction heart failure commonly display.
Collapse
Affiliation(s)
- Jason Stencel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Hamid R. Alai
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
- Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA 70119, USA
| | - Aneesh Dhore-patil
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Daniela Urina-Jassir
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| | - Thierry H. Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, Tulane University Heart and Vascular Institute, New Orleans, LA 70112, USA; (J.S.); (H.R.A.); (A.D.-p.); (D.U.-J.)
| |
Collapse
|
27
|
Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res 2023; 132:970-992. [PMID: 37053275 PMCID: PMC10097498 DOI: 10.1161/circresaha.123.321752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The endothelium is considered to be the gatekeeper of the vessel wall, maintaining and regulating vascular integrity. In patients with chronic kidney disease, protective endothelial cell functions are impaired due to the proinflammatory, prothrombotic and uremic environment caused by the decline in kidney function, adding to the increase in cardiovascular complications in this vulnerable patient population. In this review, we discuss endothelial cell functioning in healthy conditions and the contribution of endothelial cell dysfunction to cardiovascular disease. Further, we summarize the phenotypic changes of the endothelium in chronic kidney disease patients and the relation of endothelial cell dysfunction to cardiovascular risk in chronic kidney disease. We also review the mechanisms that underlie endothelial changes in chronic kidney disease and consider potential pharmacological interventions that can ameliorate endothelial health.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| |
Collapse
|
28
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:4321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
The Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Empagliflozin Reverses Hyperglycemia-Induced Monocyte and Endothelial Dysfunction Primarily through Glucose Transport-Independent but Redox-Dependent Mechanisms. J Clin Med 2023; 12:jcm12041356. [PMID: 36835891 PMCID: PMC9962711 DOI: 10.3390/jcm12041356] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Hyperglycaemia-induced oxidative stress and inflammation contribute to vascular cell dysfunction and subsequent cardiovascular events in T2DM. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin significantly improves cardiovascular mortality in T2DM patients (EMPA-REG trial). Since SGLT-2 is known to be expressed on cells other than the kidney cells, we investigated the potential ability of empagliflozin to regulate glucose transport and alleviate hyperglycaemia-induced dysfunction of these cells. METHODS Primary human monocytes were isolated from the peripheral blood of T2DM patients and healthy individuals. Primary human umbilical vein endothelial cells (HUVECs) and primary human coronary artery endothelial cells (HCAECs), and fetoplacental endothelial cells (HPECs) were used as the EC model cells. Cells were exposed to hyperglycaemic conditions in vitro in 40 ng/mL or 100 ng/mL empagliflozin. The expression levels of the relevant molecules were analysed by RT-qPCR and confirmed by FACS. Glucose uptake assays were carried out with a fluorescent derivative of glucose, 2-NBDG. Reactive oxygen species (ROS) accumulation was measured using the H2DFFDA method. Monocyte and endothelial cell chemotaxis were measured using modified Boyden chamber assays. RESULTS Both primary human monocytes and endothelial cells express SGLT-2. Hyperglycaemic conditions did not significantly alter the SGLT-2 levels in monocytes and ECs in vitro or in T2DM conditions. Glucose uptake assays carried out in the presence of GLUT inhibitors revealed that SGLT-2 inhibition very mildly, but not significantly, suppressed glucose uptake by monocytes and endothelial cells. However, we detected the significant suppression of hyperglycaemia-induced ROS accumulation in monocytes and ECs when empagliflozin was used to inhibit SGLT-2 function. Hyperglycaemic monocytes and endothelial cells readily exhibited impaired chemotaxis behaviour. The co-treatment with empagliflozin reversed the PlGF-1 resistance phenotype of hyperglycaemic monocytes. Similarly, the blunted VEGF-A responses of hyperglycaemic ECs were also restored by empagliflozin, which could be attributed to the restoration of the VEGFR-2 receptor levels on the EC surface. The induction of oxidative stress completely recapitulated most of the aberrant phenotypes exhibited by hyperglycaemic monocytes and endothelial cells, and a general antioxidant N-acetyl-L-cysteine (NAC) was able to mimic the effects of empagliflozin. CONCLUSIONS This study provides data indicating the beneficial role of empagliflozin in reversing hyperglycaemia-induced vascular cell dysfunction. Even though both monocytes and endothelial cells express functional SGLT-2, SGLT-2 is not the primary glucose transporter in these cells. Therefore, it seems likely that empagliflozin does not directly prevent hyperglycaemia-mediated enhanced glucotoxicity in these cells by inhibiting glucose uptake. We identified the reduction of oxidative stress by empagliflozin as a primary reason for the improved function of monocytes and endothelial cells in hyperglycaemic conditions. In conclusion, empagliflozin reverses vascular cell dysfunction independent of glucose transport but could partially contribute to its beneficial cardiovascular effects.
Collapse
|