1
|
Tjakra M, Chakrapeesirisuk N, Jacobson M, Sellin ME, Eriksson J, Teleki A, Bergström CAS. Optimized Artificial Colonic Mucus Enabling Physiologically Relevant Diffusion Studies of Drugs, Particles, and Delivery Systems. Mol Pharm 2025. [PMID: 40492464 DOI: 10.1021/acs.molpharmaceut.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Development of oral drug delivery systems that penetrate the colonic mucus remains challenging. Artificial models of porcine colonic mucus have been developed that mimic the rheology and viscosity of the native mucus and its contents of mucins, protein, and lipids. However, they are less representative with regard to the zeta potential, a factor of importance for charged molecules and particles. This study therefore aimed to improve the existing porcine artificial colonic mucus model by exchanging the polymer backbone (used for viscosity) to more closely mimic the charge of porcine native colonic mucus. Polymers studied were poly(acrylic acid), hydroxyethylcellulose, sodium hyaluronate, sodium alginate, and pectin. The resulting porcine artificial colonic mucus was assayed for apparent viscosity, storage modulus, pH, water content, zeta potential, and pore size. The two best-performing polymers (poly(acrylic acid) and hydroxyethylcellulose) were then assayed with diffusion of FITC-dextran, particle tracking of nanoparticles, and binding of FITC-dextran and contrasted to data generated in porcine native colonic mucus (PNCM). Of the two polymers, PACM based on HEC generated zeta potential and binding kinetics similar to those of PNCM. We conclude that the choice of polymer in PACMs is critical for improving their use in drug development. The extensive characterization of the PACMs further points toward the importance of complementary techniques to determine rheological characteristics, mesh, and pore size.
Collapse
Affiliation(s)
- Marco Tjakra
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 6 23 Uppsala, Sweden
| | | | - Magdalena Jacobson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, 751 23 Uppsala, Sweden
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Alexandra Teleki
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 6 23 Uppsala, Sweden
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
- The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Box 580, SE-751 6 23 Uppsala, Sweden
| |
Collapse
|
2
|
Chen R, Das K, Feng J, Thongrom B, Haag R. Photo-regulated disulfide crosslinking: a versatile approach to construct mucus-inspired hydrogels. Chem Sci 2025; 16:5528-5537. [PMID: 40012688 PMCID: PMC11851172 DOI: 10.1039/d4sc08284b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
The remarkable defensive ability of native mucus against pathogens has encouraged scientists to map its structure--property correlation and its influence on immune defense mechanisms. However, its poorly defined structure, source-dependent composition, and low availability limit the usefulness of native mucus in the laboratory. This gap creates a strong demand for the development of synthetic mucus-mimetic materials. Here, we report a straightforward strategy for constructing mucus-mimetic hydrogels through photo-regulated disulfide crosslinking. Light-responsive 1,2-dithiolane attached to a linear polyglycerol sulfate (lPGS) backbone allows the macromolecular building blocks to crosslink and form the hydrogel, which mirrors the chemistry of native mucus hydrogel formation with its disulfide-linked mucin chains. The viscoelastic properties of the hydrogel can be easily tuned by controlling both the light exposure time and the number of 1,2-dithiolane units within the polymer backbone. Furthermore, localized UV irradiation allows for spatially resolved hydrogel formation. Importantly, this synthetic polymer can directly crosslink with native mucin, bovine submaxillary mucin (BSM), to convert it into a hydrogel at physiological pH. The versatility of this approach - hydrogel formation via photo-regulated disulfide crosslinking - can be used to develop a synthetic mucus model.
Collapse
Affiliation(s)
- Rui Chen
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Krishnendu Das
- Organisch-Chemisches Institut, University of Münster Corrensstraße 40 48149 Münster Germany
| | - Jun Feng
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Boonya Thongrom
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
3
|
O’Brien C, Spencer S, Jafari N, Huang AJ, Scott AJ, Cheng Z, Leung BM. Modeling Cystic Fibrosis Chronic Infection Using Engineered Mucus-like Hydrogels. ACS Biomater Sci Eng 2024; 10:6558-6568. [PMID: 39297972 PMCID: PMC11483100 DOI: 10.1021/acsbiomaterials.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
The airway mucus of patients with cystic fibrosis has altered properties, which create a microenvironment primed for chronic infections that are difficult to treat. These complex polymicrobial airway infections and corresponding mammalian-microbe interactions are challenging to model in vitro. Here, we report the development of mucus-like hydrogels with varied compositions and viscoelastic properties reflecting differences between healthy and cystic fibrosis airway mucus. Models of cystic fibrosis and healthy airway microenvironments were created by combining the hydrogels with relevant pathogens, human bronchial epithelial cells, and an antibiotic. Notably, pathogen antibiotic resistance was not solely dependent on the altered properties of the mucus-like hydrogels but was also influenced by culture conditions including microbe species, monomicrobial or polymicrobial culture, and the presence of epithelial cells. Additionally, the cystic fibrosis airway model showed the ability to mimic features characteristic of chronic cystic fibrosis airway infections including sustained polymicrobial growth and increased antibiotic tolerance.
Collapse
Affiliation(s)
- Courtney
L. O’Brien
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah Spencer
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Naeimeh Jafari
- Department
of Applied Oral Science, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andy J. Huang
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alison J. Scott
- Department
of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Zhenyu Cheng
- Department
of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Brendan M. Leung
- School
of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Applied Oral Science, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Pathology, Faculty of Medicine, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
4
|
Stie MB, Cunha C, Huang Z, Kirkensgaard JJK, Tuelung PS, Wan F, Nielsen HM, Foderà V, Rønholt S. A head-to-head comparison of polymer interaction with mucin from porcine stomach and bovine submaxillary glands. Sci Rep 2024; 14:21350. [PMID: 39266622 PMCID: PMC11393313 DOI: 10.1038/s41598-024-72233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Native mucus is heterogeneous, displays high inter-individual variation and is prone to changes during harvesting and storage. To overcome the lack of reproducibility and availability of native mucus, commercially available purified mucins, porcine gastric mucin (PGM) and mucin from bovine submaxillary gland (BSM), have been widely used. However, the question is to which extent the choice of mucin matters in studies of their interaction with polymers as their composition, structure and hence physicochemical properties differ. Accordingly, the interactions between PGM or BSM with two widely used polymers in drug delivery, polyethylene oxide and chitosan, was studied with orthogonal methods: turbidity, dynamic light scattering, and quartz crystal microbalance with dissipation monitoring. Polymer binding and adsorption to the two commercially available and purified mucins, PGM and BSM, is different depending on the mucin type. PEO, known to interact weakly with mucin, only displayed limited interaction with both mucins as confirmed by all employed methods. In contrast, chitosan was able to bind to both PGM and BSM. Interestingly, the results suggest that chitosan interacts with BSM to a greater extent than with PGM indicating that the choice of mucin, PGM or BSM, can affect the outcome of studies of mucin interactions with polymers.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Cristiana Cunha
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Zheng Huang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, Rolighedsvej 26, 1958, Frederiksberg, Denmark
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Pernille Sønderby Tuelung
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Stine Rønholt
- LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Arenhoevel J, Kuppe A, Addante A, Wei LF, Boback N, Butnarasu C, Zhong Y, Wong C, Graeber SY, Duerr J, Gradzielski M, Lauster D, Mall MA, Haag R. Thiolated polyglycerol sulfate as potential mucolytic for muco-obstructive lung diseases. Biomater Sci 2024; 12:4376-4385. [PMID: 39028033 DOI: 10.1039/d4bm00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Increased disulfide crosslinking of secreted mucins causes elevated viscoelasticity of mucus and is a key determinant of mucus dysfunction in patients with cystic fibrosis (CF) and other muco-obstructive lung diseases. In this study, we describe the synthesis of a novel thiol-containing, sulfated dendritic polyglycerol (dPGS-SH), designed to chemically reduce these abnormal crosslinks, which we demonstrate with mucolytic activity assays in sputum from patients with CF. This mucolytic polymer, which is based on a reportedly anti-inflammatory polysulfate scaffold, additionally carries multiple thiol groups for mucolytic activity and can be produced on a gram-scale. After a physicochemical compound characterization, we compare the mucolytic activity of dPGS-SH to the clinically approved N-acetylcysteine (NAC) using western blot studies and investigate the effect of dPGS-SH on the viscoelastic properties of sputum samples from CF patients by oscillatory rheology. We show that dPGS-SH is more effective than NAC in reducing multimer intensity of the secreted mucins MUC5B and MUC5AC and demonstrate significant mucolytic activity by rheology. In addition, we provide data for dPGS-SH demonstrating a high compound stability, low cytotoxicity, and superior reaction kinetics over NAC at different pH levels. Our data support further development of the novel reducing polymer system dPGS-SH as a potential mucolytic to improve mucus function and clearance in patients with CF as well as other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Justin Arenhoevel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
| | - Aditi Kuppe
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Annalisa Addante
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Ling-Fang Wei
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Nico Boback
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Cosmin Butnarasu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Yinan Zhong
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
| | - Christine Wong
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Simon Y Graeber
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Julia Duerr
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Michael Gradzielski
- Technische Universität Berlin, Institute of Chemistry, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Lauster
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
- Freie Universität Berlin, Institute of Pharmacy, Biopharmaceuticals, Kelchstraße 31, 12169 Berlin, Germany
| | - Marcus A Mall
- Charité - Universitätsmedizin Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany.
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, 14195 Berlin, Germany.
| |
Collapse
|
6
|
Bej R, Stevens CA, Nie C, Ludwig K, Degen GD, Kerkhoff Y, Pigaleva M, Adler JM, Bustos NA, Page TM, Trimpert J, Block S, Kaufer BB, Ribbeck K, Haag R. Mucus-Inspired Self-Healing Hydrogels: A Protective Barrier for Cells against Viral Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401745. [PMID: 38815174 DOI: 10.1002/adma.202401745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Mucus is a dynamic biological hydrogel, composed primarily of the glycoprotein mucin, exhibits unique biophysical properties and forms a barrier protecting cells against a broad-spectrum of viruses. Here, this work develops a polyglycerol sulfate-based dendronized mucin-inspired copolymer (MICP-1) with ≈10% repeating units of activated disulfide as cross-linking sites. Cryo-electron microscopy (Cryo-EM) analysis of MICP-1 reveals an elongated single-chain fiber morphology. MICP-1 shows potential inhibitory activity against many viruses such as herpes simplex virus 1 (HSV-1) and SARS-CoV-2 (including variants such as Delta and Omicron). MICP-1 produces hydrogels with viscoelastic properties similar to healthy human sputum and with tuneable microstructures using linear and branched polyethylene glycol-thiol (PEG-thiol) as cross-linkers. Single particle tracking microrheology, electron paramagnetic resonance (EPR) and cryo-scanning electron microscopy (Cryo-SEM) are used to characterize the network structures. The synthesized hydrogels exhibit self-healing properties, along with viscoelastic properties that are tuneable through reduction. A transwell assay is used to investigate the hydrogel's protective properties against viral infection against HSV-1. Live-cell microscopy confirms that these hydrogels can protect underlying cells from infection by trapping the virus, due to both network morphology and anionic multivalent effects. Overall, this novel mucin-inspired copolymer generates mucus-mimetic hydrogels on a multi-gram scale. These hydrogels can be used as models for disulfide-rich airway mucus research, and as biomaterials.
Collapse
Affiliation(s)
- Raju Bej
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Corey Alfred Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Kai Ludwig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - George D Degen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yannic Kerkhoff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Marina Pigaleva
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Nicole A Bustos
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Stephan Block
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
7
|
Kramer C, Rulff H, Ziegler JF, Mönch PW, Alzain N, Addante A, Kuppe A, Timm S, Schrade P, Bischoff P, Glauben R, Dürr J, Ochs M, Mall MA, Gradzielski M, Siegmund B. Ileal mucus viscoelastic properties differ in Crohn's disease. Mucosal Immunol 2024; 17:713-722. [PMID: 38750968 DOI: 10.1016/j.mucimm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the gastrointestinal tract, frequently involving the terminal ileum. While colonic mucus alterations in CD patients have been described, terminal ileal mucus and its mechanobiological properties have been neglected. Our study is the first of its kind to decipher the viscoelastic and network properties of ileal mucus. With that aim, oscillatory rheological shear measurements based on an airway mucus protocol that was thoroughly validated for ileal mucus were performed. Our pilot study analyzed terminal ileum mucus from controls (n = 14) and CD patients (n = 14). Mucus network structure was visualized by scanning electron microscopy. Interestingly, a statistically significant increase in viscoelasticity as well as a decrease in mesh size was observed in ileal mucus from CD patients compared to controls. Furthermore, rheological data were analyzed in relation to study participants' clinical characteristics, revealing a noteworthy trend between non-smokers and smokers. In conclusion, this study provides the first data on the viscoelastic properties and structure of human ileal mucus in the healthy state and Crohn's disease, demonstrating significant alterations between groups and highlighting the need for further research on mucus and its effect on the underlying epithelial barrier.
Collapse
Affiliation(s)
- Catharina Kramer
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Rulff
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Jörn Felix Ziegler
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Wilhelm Mönch
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadra Alzain
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Schrade
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Glauben
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Dürr
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | | | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Rulff H, Schmidt RF, Wei LF, Fentker K, Kerkhoff Y, Mertins P, Mall MA, Lauster D, Gradzielski M. Comprehensive Characterization of the Viscoelastic Properties of Bovine Submaxillary Mucin (BSM) Hydrogels and the Effect of Additives. Biomacromolecules 2024; 25:4014-4029. [PMID: 38832927 PMCID: PMC11238336 DOI: 10.1021/acs.biomac.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.
Collapse
Affiliation(s)
- Hanna Rulff
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Robert F. Schmidt
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Ling-Fang Wei
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kerstin Fentker
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Research
Center of Electron Microscopy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Philipp Mertins
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
| | - Marcus A. Mall
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
- Department
of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine,
Charite, Universitätsmedizin Berlin, 13353 Berlin, Germany
- German
Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Daniel Lauster
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Gradzielski
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| |
Collapse
|
9
|
Tafech B, Rokhforouz MR, Leung J, Sung MM, Lin PJ, Sin DD, Lauster D, Block S, Quon BS, Tam Y, Cullis P, Feng JJ, Hedtrich S. Exploring Mechanisms of Lipid Nanoparticle-Mucus Interactions in Healthy and Cystic Fibrosis Conditions. Adv Healthc Mater 2024; 13:e2304525. [PMID: 38563726 DOI: 10.1002/adhm.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mucus forms the first defense line of human lungs, and as such hampers the efficient delivery of therapeutics to the underlying epithelium. This holds particularly true for genetic cargo such as CRISPR-based gene editing tools which cannot readily surmount the mucosal barrier. While lipid nanoparticles (LNPs) emerge as versatile non-viral gene delivery systems that can help overcome the delivery challenge, many knowledge gaps remain, especially for diseased states such as cystic fibrosis (CF). This study provides fundamental insights into Cas9 mRNA or ribonucleoprotein-loaded LNP-mucus interactions in healthy and diseased states by assessing the impact of the genetic cargo, mucin sialylation, mucin concentration, ionic strength, pH, and polyethylene glycol (PEG) concentration and nature on LNP diffusivity leveraging experimental approaches and Brownian dynamics (BD) simulations. Taken together, this study identifies key mucus and LNP characteristics that are critical to enabling a rational LNP design for transmucosal delivery.
Collapse
Affiliation(s)
- Belal Tafech
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mohammad-Reza Rokhforouz
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Molly Mh Sung
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Paulo Jc Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, 12169, Berlin, Germany
| | - Stephan Block
- Institute of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| |
Collapse
|
10
|
Schaupp L, Addante A, Völler M, Fentker K, Kuppe A, Bardua M, Duerr J, Piehler L, Röhmel J, Thee S, Kirchner M, Ziehm M, Lauster D, Haag R, Gradzielski M, Stahl M, Mertins P, Boutin S, Graeber SY, Mall MA. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on sputum viscoelastic properties, airway infection and inflammation in patients with cystic fibrosis. Eur Respir J 2023; 62:2202153. [PMID: 37414422 DOI: 10.1183/13993003.02153-2022] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12 years throughout the first 12 months of therapy. METHODS In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12 months after initiation of ETI. RESULTS In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12 months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3 months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3 months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12 months of therapy; however, levels close to healthy were not reached.
Collapse
Affiliation(s)
- Laura Schaupp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Kerstin Fentker
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Markus Bardua
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ziehm
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Lauster
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Gradzielski
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Sébastien Boutin
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein/Campus, Lübeck, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| |
Collapse
|
11
|
Esteban Enjuto L, Robert de Saint Vincent M, Maurin M, Degano B, Bodiguel H. Sputum handling for rheology. Sci Rep 2023; 13:7695. [PMID: 37169792 PMCID: PMC10173912 DOI: 10.1038/s41598-023-34043-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] Open
Abstract
The rheology of sputum is viewed as a powerful emerging biophysical marker for monitoring muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). However, there is no unified practice to process sputa from collection to analysis, which can lead to highly variable, and sometimes inconsistent results. The main objective of this study is to bring light into the handling of sputum samples to establish a standardised and robust protocol before rheological measurements. Sputum collected from 22 CF and 10 NCFB adults, was divided into control (vortexed and fresh: non-heated and non-frozen) and three treated conditions (either non-vortexed, heated or frozen). In addition, 6 CF expectorations were used to study the dynamics of ageing over 24 h. Sputum's mechanical properties were measured with a rotational rheometer to obtain their properties at rest, elastic ([Formula: see text]) and viscous moduli ([Formula: see text]), and at the onset of flow, critical deformation ([Formula: see text]) and critical stress ([Formula: see text]). We demonstrate that heating sputum is completely destructive while freezing sputa at [Formula: see text] has no discernible effect on their rheology. We also show that the variability of rheological measurements largely resulted from the sample's macroscopic heterogeneity, and can be greatly reduced by non-destructive vortex homogenisation. Finally, we observed contrasted ageing effects as a fonction of purulence: while the viscoelasticity of purulent samples reduced by half within 6 h after collection, semi-purulent samples did not evolve. These results guide towards a robust unified protocol for simple sputum handling in rheometry. We therefore suggest to vortex and snap freeze sputum samples immediately after collection when direct testing is not possible.
Collapse
Affiliation(s)
- Lydia Esteban Enjuto
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LRP UMR5520, Grenoble, France.
- Rheonova, 1 Allée de Certèze, 38610, Gières, France.
| | | | - Max Maurin
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC, Grenoble, France
| | - Bruno Degano
- Univ. Grenoble Alpes, INSERM U1030, CHU Grenoble Alpes, Grenoble, France
| | - Hugues Bodiguel
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LRP UMR5520, Grenoble, France
| |
Collapse
|