1
|
Liu Y, Chen L, Chang L, Wang S. EZH1-DNMT1 axis inhibits the expression of TFPI2 to promote osteogenic differentiation of periosteum-derived stem cells and accelerate fracture repair. Tissue Cell 2025; 93:102759. [PMID: 39892329 DOI: 10.1016/j.tice.2025.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The periosteum lies in a dynamic environment with a niche of periosteum-derived stem cells (PDSCs) for their reparative needs. Here, we report that epigenetic repression of tissue factor pathway inhibitor 2 (TFPI2) mediates the osteogenic potential of PDSCs and the ensuing fracture repair. METHODS Significantly overexpressed TFPI2 after fracture was screened using the GSE152677 dataset, and the expression of TFPI2 in bone tissues of post-fracture mice was verified by RT-qPCR and immunohistochemistry. Loss- and gain-of-function assays were conducted using adenoviruses. Primary mouse PDSCs were extracted, and their osteogenic potential was assessed using ALP staining, alizarin red staining, and western blot analysis. The epigenetic modifiers of TFPI2 were verified using ChIP-qPCR, Co-IP, and qMSP. RESULTS TFPI2 expression was elevated after fracture, whereas enhancer of zeste homolog 1 (EZH1) expression was significantly downregulated. Inhibition of TFPI2 expression promoted fracture repair in mice, which was correlated with enhanced osteogenic differentiation of PDSCs. EZH1 repressed TFPI2 expression by modifying trimethylation of histone H3 at lysine 27 (H3K27me3). EZH1 promoted TFPI2 promoter DNA methylation by recruiting DNA-methyltransferase 1 (DNMT1), leading to transcriptional repression of TFPI2. Overexpression of DNMT1 and EZH1 significantly promoted recovery in fractured mice, which was reversed by inhibition of TFPI2. CONCLUSIONS These results suggest that artificial overexpression EZH1 mediates TFPI2 inhibition by recruiting DNMT1, promoting osteogenic differentiation of PDSCs to accelerate fracture repair.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Lu Chen
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Liang Chang
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Shuren Wang
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China.
| |
Collapse
|
2
|
Sun GB, Lu YF, Duan XJ. Investigation into the association of FNDC1 and ADAMTS12 gene expression with plumage coloration in Muscovy ducks. Open Life Sci 2024; 19:20220877. [PMID: 38867923 PMCID: PMC11167702 DOI: 10.1515/biol-2022-0877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
To elucidate the molecular genetic mechanisms underpinning feather color in Muscovy ducks. A cohort of 100 Muscovy ducks was meticulously selected for this research. Follicular tissues from ducks exhibiting black and white plumage served as the experimental samples. From these tissues, RNA and proteins were extracted for further analysis. The RNA underwent reverse transcription polymerase chain reaction amplification, followed by validation through western blot assays. The data revealed a significant upregulation in the expression of FN domain-containing protein 1 (FNDC1) and ADAMTS12 genes in Muscovy ducks with white plumage traits as opposed to those with black plumage traits. Specifically, individuals with pure white plumage demonstrated a markedly elevated expression of the FNDC1 gene in comparison to their pure black counterparts. Conversely, expression levels of the ADAMTS12 gene were found to be reduced in ducks with pure black plumage relative to those with pure white plumage. Notably, the expression patterns of FNDC1 and ADAMTS12 genes exhibited inconsistencies between mRNA and protein levels. This study offers significant insights into the molecular genetic mechanisms underlying feather color variation in Muscovy ducks. FNDC1 and ADAMTS12 could be considered potential targets for genetic manipulation or selective breeding strategies aimed at achieving specific feather color phenotypes in Muscovy ducks.
Collapse
Affiliation(s)
- Guo-Bo Sun
- Animal Science and Technology College, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Yan-Feng Lu
- Animal Science and Technology College, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, Jiangsu, China
| | - Xiu-Jun Duan
- Animal Science and Technology College, Jiangsu Agri-animal Husbandry Vocational College, No. 8 of Fenghuang East Road, Hailing District, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
3
|
Costa CRR, Chalgoumi R, Baker A, Guillou C, Yamaguti PM, Simancas Escorcia V, Abbad L, Amorin BR, de Lima CL, Cannaya V, Benassarou M, Berdal A, Chatziantoniou C, Cases O, Cosette P, Kozyraki R, Acevedo AC. Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis. Sci Rep 2024; 14:9497. [PMID: 38664418 PMCID: PMC11045870 DOI: 10.1038/s41598-024-59713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.
Collapse
Affiliation(s)
- Cláudio Rodrigues Rezende Costa
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
- Department of Dentistry, Health Group of Natal (GSAU-NT), Brazilian Air Force, Natal, Parnamirim, Brazil
| | - Rym Chalgoumi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Amina Baker
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Clément Guillou
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Paulo Marcio Yamaguti
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Grupo de Investigación GENOMA, Universidad del Sinú, Cartagena, Colombia
| | - Lilia Abbad
- MRS1155, INSERM, Sorbonne Université, 75020, Paris, France
| | - Bruna Rabelo Amorin
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital de La Pitié Salpétrière, Sorbonne Université, 75006, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France
| | | | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Pascal Cosette
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France.
- Rouen University, UFR SANTE ROUEN NORMANDIE, Inserm 1096, 76000, Rouen, France.
| | - Ana Carolina Acevedo
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
4
|
Kim YM, Lim HH, Kim E, Kim G, Kim M, So H, Lee BK, Kwon Y, Min J, Lee YS. Exploring the Genetic Causes for Postnatal Growth Failure in Children Born Non-Small for Gestational Age. J Clin Med 2023; 12:6508. [PMID: 37892645 PMCID: PMC10607479 DOI: 10.3390/jcm12206508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The most common causes of short stature (SS) in children are familial short stature (FSS) and idiopathic short stature (ISS). Recently, growth plate dysfunction has been recognized as the genetic cause of FSS or ISS. The aim of this study was to investigate monogenic growth failure in patients with ISS and FSS. Targeted exome sequencing was performed in patients categorized as ISS or FSS and the subsequent response to growth hormone (GH) therapy was analyzed. We found 17 genetic causes involving 12 genes (NPR2, IHH, BBS1, COL1A1, COL2A1, TRPS1, MASP1, SPRED1, PTPTN11, ADNP, NADSYN1, and CERT1) and 2 copy number variants. A genetic cause was found in 45.5% and 35.7% of patients with FSS and ISS, respectively. The genetic yield in patients with syndromic and non-syndromic SS was 90% and 23.1%, respectively. In the 11 genetically confirmed patients, a gain in height from -2.6 to -1.3 standard deviations after 2 years of GH treatment was found. The overall diagnostic yield in this study was 41.7%. We identified several genetic causes involving paracrine signaling, the extracellular matrix, and basic intracellular processes. Identification of the causative gene may provide prognostic evidence for the use of GH therapy in non-SGA children.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han-Hyuk Lim
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eunhee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Geena Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyejin So
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Byoung Kook Lee
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoowon Kwon
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jeesu Min
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Young Seok Lee
- Department of Radiology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
5
|
Ramser A, Hawken R, Greene E, Okimoto R, Flack B, Christopher CJ, Campagna SR, Dridi S. Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology. Metabolites 2023; 13:metabo13050662. [PMID: 37233703 DOI: 10.3390/metabo13050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, AR 72761, USA
| | | | | | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|