1
|
Bettariga F, Taaffe DR, Galvão DA, Lopez P, Bishop C, Markarian AM, Natalucci V, Kim JS, Newton RU. Exercise training mode effects on myokine expression in healthy adults: A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:764-779. [PMID: 38604409 PMCID: PMC11336361 DOI: 10.1016/j.jshs.2024.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The benefits of exercise are well known; however, many of the underlying molecular mechanisms are not fully understood. Skeletal muscle secretes myokines, which mediate muscle-organ crosstalk. Myokines regulate satellite-cell proliferation and migration, inflammatory cascade, insulin secretion, angiogenesis, fatty oxidation, and cancer suppression. To date, the effects of different exercise modes (namely, aerobic and resistance exercise) on myokine response remain to be elucidated. This is crucial considering the clinical implementation of exercise to enhance general health and wellbeing and as a medical treatment. METHODS A systematic search was undertaken in PubMed, MEDLINE, CINAHL, Embase, SPORTDiscus, and Web of Science in April 2023. Eligible studies examining the effects of a single bout of exercise on interleukin15 (IL-15), irisin, secreted protein acidic and rich in cysteine (SPARC), oncostatin M (OSM), and decorin were included. A random-effects meta-analysis was also undertaken to quantify the magnitude of change. RESULTS Sixty-two studies were included (n = 1193). Overall, exercise appeared to induce small to large increases in myokine expression, with effects observed immediately after to 60 min post-exercise, although these were mostly not statistically significant. Both aerobic and resistance exercise resulted in changes in myokine levels, without any significant difference between training modes, and with the magnitude of change differing across myokines. Myokine levels returned to baseline levels within 180 min to 24 h post-exercise. However, owing to potential sources of heterogeneity, most changes were not statistically significant, indicating that precise conclusions cannot be drawn. CONCLUSION Knowledge is limited but expanding with respect to the impact of overall and specific effects of exercise on myokine expression at different time points in the systemic circulation. Further research is required to investigate the effects of different exercise modes at multiple time points on myokine response.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Pedro Lopez
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, WA 6009, Australia; Medical School, Faculty of Health & Medical Sciences, University of Western Australia, Perth, WA 6009, Australia; Grupo de Pesquisa em Exercício para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Anna Maria Markarian
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Valentina Natalucci
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20133, Italy
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Farley MJ, Boytar AN, Adlard KN, Salisbury CE, Hart NH, Schaumberg MA, Jenkins DG, Skinner TL. Interleukin-15 and high-intensity exercise: relationship with inflammation, body composition and fitness in cancer survivors. J Physiol 2024; 602:5203-5215. [PMID: 39303144 DOI: 10.1113/jp286043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Pre-clinical murine and in vitro models have demonstrated that exercise suppresses tumour and cancer cell growth. These anti-oncogenic effects of exercise were associated with the exercise-mediated release of myokines such as interleukin (IL)-15. However, no study has quantified the acute IL-15 response in human cancer survivors, and whether physiological adaptations to exercise training (i.e. body composition and cardiorespiratory fitness) influence this response. In the present study breast, prostate and colorectal cancer survivors (n = 14) completed a single bout of high-intensity interval exercise (HIIE) [4×4 min at 85-95% heart rate (HR) peak, 3 min at 50-70% HR peak] before and after 7 months of three times weekly high-intensity interval training (HIIT) on a cycle ergometer. At each time point venous blood was sampled before and immediately after HIIE to assess the acute myokine (IL-15, IL-6, IL-10, IL-1ra) responses. Markers of inflammation, cardiorespiratory fitness and measures of body composition were obtained at baseline and 7 months. An acute bout of HIIE resulted in a significant increase in IL-15 concentrations (pre-intervention: 113%; P = 0.013, post-intervention: 102%; P = 0.005). Post-exercise IL-15 concentrations were associated with all other post-exercise myokine concentrations, lean mass (P = 0.031), visceral adipose tissue (P = 0.039) and absoluteV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ peak (P = 0.032). There was no significant effect of 7 months of HIIT on pre- or post-HIIE IL-15 concentrations (P > 0.05). This study demonstrates HIIE is a sufficient stimulus to increase circulating IL-15 and other myokines including IL-6, IL-10 and IL-1ra which may be clinically relevant in the anti-oncogenic effect of exercise and repetitive exposure to these effects may contribute to the positive relationship between exercise and cancer recurrence. KEY POINTS: Exercise has been demonstrated to reduce the risk of cancer recurrence. Pre-clinical murine and in vitro models have demonstrated that exercise suppresses tumour and cancer cell growth, mediated by exercise-induced myokines (IL-6 and IL-15). High-intensity interval exercise significantly increased myokines associated with the anti-oncogenic effect of exercise and the magnitude of response was associated with lean mass, but training did not appear to influence this response. Given IL-15 has been implicated in the anti-oncogenic effect of exercise and is being explored as an immunotherapy agent, high-intensity interval exercise may improve outcomes for people living beyond cancer through IL-15-mediated pathways. Interventions that increase lean mass may also enhance this response.
Collapse
Affiliation(s)
- Morgan J Farley
- Human Performance Research Centre, INSIGHT Research Institute, Faculty of Health, University of Technology Sydney (UTS), Sydney, New South Wales, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten N Adlard
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Chloe E Salisbury
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicolas H Hart
- Human Performance Research Centre, INSIGHT Research Institute, Faculty of Health, University of Technology Sydney (UTS), Sydney, New South Wales, Australia
- Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Institute for Health Research, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - Mia A Schaumberg
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
- Manna Institute, University of New England, Armidale, New South Wales, Australia
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
- Applied Sports Science Technology and Medicine Research Centre, Swansea University, Swansea, UK
| | - Tina L Skinner
- Human Performance Research Centre, INSIGHT Research Institute, Faculty of Health, University of Technology Sydney (UTS), Sydney, New South Wales, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- School of Health Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Gabriel I, Delaney ML, Au M, Courtepatte A, Bry L, Minassian VA. Impact of microbiota and host immunologic response on the efficacy of anticholinergic treatment for urgency urinary incontinence. Int Urogynecol J 2023; 34:3041-3050. [PMID: 37837459 DOI: 10.1007/s00192-023-05664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Studies within the past decade have suggested associations among composition of the urinary microbiota, local immune responses, and urinary incontinence symptoms. To investigate these relationships, we evaluated the structure of the urinary microbiome, local inflammatory markers, and patient responses prior to and at 6-weeks after treatment with anticholinergic medication for urgency urinary incontinence (UUI). METHODS Using a prospective pilot study, we enrolled women who presented with UUI symptoms and were prescribed treatment with anticholinergics. Catheterized urine samples were collected from participants at their baseline and 6-week follow-up visits for microbiological (standard and 16S rRNA gene phylotyping analyses) and cytokine analysis along with the UDI-6 questionnaire and 2-day bladder diary. RESULTS Patients were Caucasian, post- menopausal, with a median age of 64 and median BMI of 30.1 kg/m2. Among the patients, 75% had UUI symptoms for less than 2 years, but with a frequency of at least a few times a week or every day. Most women were prescribed 10 mg oxybutynin ER daily at enrollment. Patients had varied urinary microbiota by culture and 16S phylotyping, with species of Lactobacillus being the most common, in six samples, in addition to taxa associated with Enterococcus, Staphylococcus, and mixed flora. Cytokine levels showed no differences before and after treatment with anticholinergics, nor correlation with urinary bacteria or microbiome composition. CONCLUSIONS Our pilot study suggests factors in addition to the urinary microbiome and local immune responses may be involved in patients' response to anticholinergics for UUI.
Collapse
Affiliation(s)
- Iwona Gabriel
- Division of Urogynecology, Brigham and Women's Hospital, 500 Brookline Ave, Suite E, Boston, MA, 02115, USA
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia, Bytom, Poland
| | - Mary Louise Delaney
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Matthew Au
- Evans Biomedical Research Center, Boston, MA, USA
| | - Alexa Courtepatte
- Division of Urogynecology, Brigham and Women's Hospital, 500 Brookline Ave, Suite E, Boston, MA, 02115, USA.
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Vatche A Minassian
- Division of Urogynecology, Brigham and Women's Hospital, 500 Brookline Ave, Suite E, Boston, MA, 02115, USA
| |
Collapse
|