1
|
Zhang Y, Zhang J, Tan Y, Wang X, Chen H, Yu H, Chen F, Yan X, Sun J, Luo J, Song F. Kidney transcriptome analysis reveals the molecular responses to salinity adaptation in largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101362. [PMID: 39566113 DOI: 10.1016/j.cbd.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Recently, against the background of increasing land salinization and global warming, many studies have examined the mechanisms of freshwater fish adaptation to elevated salinity. However, the mechanisms underlying salinity tolerance in the kidney of Micropterus salmoides, a popular saline aquaculture species, remain poorly understood. We used RNA-seq to explore the differentially expressed genes (DEGs) in the kidney of M. salmoides at 0 ‰, 5 ‰, and 10 ‰ salinity for 24 d and 48 d. These DEGs mainly affected metabolism-related pathways, such as secondary metabolite biosynthesis, arachidonic acid metabolism, etc., and immunity-related pathways, such as IL-17 signaling and ECM-receptor interaction. Trend analysis on days 24 and 48 showed that, as salinity increased, the up-regulated genes were notably enriched in the cytochrome P450 xenobiotic metabolic pathway, and down-regulated genes substantially linked to cell cycle, phagosome, etc. More importantly, we identified a total of 22 genes enriched in the cytochrome P450 xenobiotic metabolic pathway, including seven UDP-glucuronosyltransferase genes (UGTs) and five glutathione S-transferase genes (GSTs). We speculated that M. salmoides kidneys removed toxic substances produced due to salinity stress and mitigated oxidative damage by up-regulating UGTs and GSTs, hence maintaining normal physiological function. In addition, genes such as Cystatin A1, significantly up-regulated with increasing salinity stress and duration, favoured the recovery of kidney injury. This research delved into the molecular processes involved in the adaptability of M. salmoides to high salinity stress and provided valuable information for the future breeding of salinity-tolerant strains.
Collapse
Affiliation(s)
- Yichun Zhang
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jinxin Zhang
- Jiangsu Fisheries Technology Promotion Center, Nanjing 210036, China
| | - Yafang Tan
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinxin Wang
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huapeng Chen
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Haoran Yu
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Feiyang Chen
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinling Yan
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Junlong Sun
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jian Luo
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Feibiao Song
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
D'Anatro A, Calvelo J, Feijóo M, Giorello FM. Differential expression analyses and detection of SNP loci associated with environmental variables: Are salinity and temperature factors involved in population differentiation and speciation in Odontesthes? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101262. [PMID: 38861850 DOI: 10.1016/j.cbd.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Environmental factors play a key role in individual adaptation to different local conditions. Because of this, studies about the physiological and genetic responses of individuals exposed to different natural environments offer clues about mechanisms involved in population differentiation, and as a subsequent result, speciation. Marine environments are especially suited to survey this kind of phenomena because they commonly harbor species adapted to different local conditions along a geographic continuum. Silversides belonging to Odontesthes are commonly distributed in tropical and temperate regions of South America and exhibit noticeable phenotypic plasticity, which allows them to adapt to contrasting environments. In this study, the genetic expression of O. argentinensis sampled along the Uruguayan Atlantic coast and estuarine adjacent areas was investigated. In addition, the correlation between individual genotypes and environmental variables was also analysed in O. argentinensis and O. bonariensis. Results obtained suggest a differential expression pattern of low magnitude among individuals from the different areas sampled and a correlation between several SNP loci and environmental variables. The analyses carried out did not show a clear differentiation among individuals sampled along different salinity regimens, but enriched GOTerms seem to be driven by water oxygen content. On the other hand, a total of 46 SNPs analysed in O. argentinensis and O. bonariensis showed a correlation with salinity and temperature. Although none of the correlated SNPs and corresponding genes from our both analyses were directly associated with hypoxia, genes related to the cardiovascular system and muscle cell differentiation were found. All these genes are interesting candidates for future studies since they are closely related to the differentially expressed genes. Although salinity was also mentioned as an important parameter limiting introgression between O. argentinensis and O. bonariensis, it was found that salinity does not drive differential expression in O. argentinensis, but rather oxygen levels. Moreover, salinity does not directly affect the structure and genetic divergence of the populations, they appear to be structured based on their degree of isolation and geographical distance between them. Further studies, like genome-wide analyses, could help to elucidate additional genes adapted to the different environments in these silverside species.
Collapse
Affiliation(s)
- Alejandro D'Anatro
- Laboratorio de Evolución y Sistemática, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías Feijóo
- Centro Universitario Regional Este, Sede Treinta y Tres, Universidad de la República, Treinta y Tres, Uruguay
| | - Facundo M Giorello
- Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| |
Collapse
|
3
|
Yu D, Zhou M, Chen W, Ding Z, Wang C, Qian Y, Liu Y, He S, Yang L. Characterization of transcriptome changes in saline stress adaptation on Leuciscus merzbacheri using PacBio Iso-Seq and RNA-Seq. DNA Res 2024; 31:dsae019. [PMID: 38807352 PMCID: PMC11161863 DOI: 10.1093/dnares/dsae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
Leuciscus merzbacheri is a native fish species found exclusively in the Junggar Basin in Xinjiang. It exhibits remarkable adaptability, thriving in varying water conditions such as the saline waters, the semi-saline water, and the freshwater. Despite its significant economic and ecological value, the underlying mechanisms of its remarkable salinity tolerance remain elusive. Our study marks the first time the full-length transcriptome of L. merzbacheri has been reported, utilizing RNA-Seq and PacBio Iso-Seq technologies. We found that the average length of the full-length transcriptome is 1,780 bp, with an N50 length of 2,358 bp. We collected RNA-Seq data from gill, liver, and kidney tissues of L. merzbacheri from both saline water and freshwater environments and conducted comparative analyses across these tissues. Further analysis revealed significant enrichment in several key functional gene categories and signalling pathways related to stress response and environmental adaptation. The findings provide a valuable genetic resource for further investigation into saline-responsive candidate genes, which will deepen our understanding of teleost adaptation to extreme environmental stress. This knowledge is crucial for the future breeding and conservation of native fish species.
Collapse
Affiliation(s)
- Dan Yu
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Zhou
- School of Life Sciences, Jianghan Universily, Wuhan 430056, China
| | - Wenjun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zufa Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
4
|
Shukla N, Harshini V, Raval I, Patel AK, Joshi CG. lncRNA-miRNA-mRNA network in kidney transcriptome of Labeo rohita under hypersaline environment. Sci Data 2024; 11:226. [PMID: 38388642 PMCID: PMC10883911 DOI: 10.1038/s41597-024-03056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The present study describes the kidney transcriptome of Labeo rohita, a freshwater fish, exposed to gradually increased salinity concentrations (2, 4, 6 and 8ppt). A total of 10.25 Gbps data was generated, and a suite of bioinformatics tools, including FEELnc, CPC2 and BLASTn were employed for identification of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). Our analysis revealed a total of 170, 118, 99, and 269 differentially expressed lncRNA and 120, 118, 99, and 124 differentially expressed miRNAs in 2, 4, 6 and 8 ppt treatment groups respectively. Two competing endogenous RNA (ceRNA) networks were constructed i.e. A* ceRNA network with up-regulated lncRNAs and mRNAs, down-regulated miRNAs; and B* ceRNA network vice versa. 2ppt group had 131 and 83 lncRNA-miRNA-mRNA pairs in A* and B* networks, respectively. 4ppt group featured 163 pairs in A* network and 191 in B* network, while the 6ppt had 103 and 105 pairs. 8ppt group included 192 and 174 pairs. These networks illuminate the intricate RNA interactions in freshwater fish to varying salinity conditions.
Collapse
Affiliation(s)
- Nitin Shukla
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India
| | - Vemula Harshini
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India
| | - Ishan Raval
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India.
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, Gujarat, India.
| |
Collapse
|
5
|
Harshini V, Shukla N, Raval I, Kumar S, Shrivastava V, Chaudhari A, Patel AK, Joshi CG. Interplay of gene expression and regulators under salinity stress in gill of Labeo rohita. BMC Genomics 2023; 24:336. [PMID: 37337199 DOI: 10.1186/s12864-023-09426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Labeo rohita is the most preferred freshwater carp species in India. The concern of increasing salinity concentration in freshwater bodies due to climate change may greatly impact the aquatic environment. Gills are one of the important osmoregulatory organs and have direct contact with external environment. Hence, the current study is conducted to understand the gill transcriptomic response of L. rohita under hypersalinity environment. RESULTS Comprehensive analysis of differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs was performed in gills of L. rohita treated with 2, 4, 6 and 8ppt salinity concentrations. Networks of lncRNA-miRNA-mRNA revealed involvement of 20, 33, 52 and 61 differentially expressed lncRNAs, 11, 13, 26 and 21 differentially expressed miRNAs in 2, 4, 6 and 8ppt groups between control and treatment respectively. These lncRNA-miRNA pairs were regulating 87, 214, 499 and 435 differentially expressed mRNAs (DE mRNAs) in 2, 4, 6 and 8ppt treatments respectively. Functional analysis of these genes showed enrichment in pathways related to ion transportation and osmolyte production to cope with induced osmotic pressure due to high salt concentration. Pathways related to signal transduction (MAPK, FOXO and phosphatidylinositol signaling), and environmental information processing were also upregulated under hypersalinity. Energy metabolism and innate immune response pathways also appear to be regulated. Protein turnover was high at 8ppt as evidenced by enrichment of the proteasome and aminoacyl tRNA synthesis pathways, along with other enriched KEGG terms such as apoptosis, cellular senescence and cell cycle. CONCLUSION Altogether, the RNA-seq analysis provided valuable insights into competitive endogenous (lncRNA-miRNA-mRNA) regulatory network of L. rohita under salinity stress. L. rohita is adapting to the salinity stress by means of upregulating protein turnover, osmolyte production and removing the damaged cells using apoptotic pathway and regulating the cell growth and hence diverting the essential energy for coping with salinity stress.
Collapse
Affiliation(s)
- Vemula Harshini
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Ishan Raval
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Sujit Kumar
- Postgraduate Institute of Fisheries Education and Research, Kamdhenu University, Himmatnagar, 383010, Gujarat, India
| | - Vivek Shrivastava
- Postgraduate Institute of Fisheries Education and Research, Kamdhenu University, Himmatnagar, 383010, Gujarat, India
| | - Aparna Chaudhari
- Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India.
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India.
| |
Collapse
|
6
|
Chen J, Cai B, Tian C, Jiang D, Shi H, Huang Y, Zhu C, Li G, Deng S. RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat ( Scatophagus argus). Animals (Basel) 2023; 13:ani13091503. [PMID: 37174540 PMCID: PMC10177406 DOI: 10.3390/ani13091503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and pparα) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.
Collapse
Affiliation(s)
- Jieqing Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bosheng Cai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| |
Collapse
|