1
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
2
|
Satarug S. Urinary N-acetylglucosaminidase in People Environmentally Exposed to Cadmium Is Minimally Related to Cadmium-Induced Nephron Destruction. TOXICS 2024; 12:775. [PMID: 39590955 PMCID: PMC11598048 DOI: 10.3390/toxics12110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Exposure to even low levels of the environmental pollutant cadmium (Cd) increases the risk of kidney damage and malfunction. The body burden of Cd at which these outcomes occur is not, however, reliably defined. Here, multiple-regression and mediation analyses were applied to data from 737 non-diabetic Thai nationals, of which 9.1% had an estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2 (a low eGFR). The excretion of Cd (ECd), and renal-effect biomarkers, namely β2-microglobulin (Eβ2M), albumin (Ealb), and N-acetylglucosaminidase (ENAG), were normalized to creatinine clearance (Ccr) as ECd/Ccr Eβ2M/Ccr, Ealb/Ccr, and ENAG/Ccr. After adjustment for potential confounders, the risks of having a low eGFR and albuminuria rose twofold per doubling ECd/Ccr rates and they both varied directly with the severity of β2-microglobulinuria. Doubling ECd/Ccr rates also increased the risk of having a severe tubular injury, evident from ENAG/Ccr increments [POR = 4.80, p = 0.015]. ENAG/Ccr was strongly associated with ECd/Ccr in both men (β = 0.447) and women (β = 0.394), while showing a moderate inverse association with eGFR only in women (β = -0.178). A moderate association of ENAG/Ccr and ECd/Ccr was found in the low- (β = 0.287), and the high-Cd body burden groups (β = 0.145), but ENAG/Ccr was inversely associated with eGFR only in the high-Cd body burden group (β = -0.223). These discrepancies together with mediation analysis suggest that Cd-induced nephron destruction, which reduces GFR and the tubular release of NAG by Cd, involves different mechanisms and kinetics.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Dissanayake LV, Palygin O, Staruschenko A. Lysine and salt-sensitive hypertension. Curr Opin Nephrol Hypertens 2024; 33:441-446. [PMID: 38639736 DOI: 10.1097/mnh.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
PURPOSE OF REVIEW Salt-sensitive (SS) hypertension and its associated kidney damage have been extensively studied, yet proper therapeutic strategies are lacking. The interest in altering the metabolome to affect renal and cardiovascular disease has been emerging. Here, we discuss the effect and potential mechanism behind the protective effect of lysine, an essential amino acid, on the progression of SS hypertension. RECENT FINDINGS We have recently demonstrated that administering lysine in an SS rodent model can control the progression of hypertension. Both the animal and pilot human studies showed that lysine can efficiently inhibit tubular reabsorption of albumin and protect the kidneys from further damage. In addition, we conducted multilevel omics studies that showed increased lysine conjugation and excretion, leading to the depletion of harmful metabolites and an increase in useful ones. SUMMARY Lysine's twofold action involves both mechanically flushing protein from proximal tubules to shield the kidneys and initiating metabolic adaptations in the kidneys. This results in a net positive impact on SS hypertension. While further research is necessary to apply the current findings in clinical settings, this study offers some evidence suggesting that lysine supplementation holds promise as a therapeutic approach for hypertensive kidney disease.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander Staruschenko
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| |
Collapse
|
4
|
Kmochová T, Kidd KO, Orr A, Hnízda A, Hartmannová H, Hodaňová K, Vyleťal P, Naušová K, Brinsa V, Trešlová H, Sovová J, Barešová V, Svojšová K, Vrbacká A, Stránecký V, Robins VC, Taylor A, Martin L, Rivas-Chavez A, Payne R, Bleyer HA, Williams A, Rennke HG, Weins A, Short PJ, Agrawal V, Storsley LJ, Waikar SS, McPhail ED, Dasari S, Leung N, Hewlett T, Yorke J, Gaston D, Geldenhuys L, Samuels M, Levine AP, West M, Hůlková H, Pompach P, Novák P, Weinberg RB, Bedard K, Živná M, Sikora J, Bleyer AJ, Kmoch S. Autosomal dominant ApoA4 mutations present as tubulointerstitial kidney disease with medullary amyloidosis. Kidney Int 2024; 105:799-811. [PMID: 38096951 DOI: 10.1016/j.kint.2023.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.
Collapse
Affiliation(s)
- Tereza Kmochová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kendrah O Kidd
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew Orr
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aleš Hnízda
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Vyleťal
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Naušová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vítězslav Brinsa
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Sovová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Barešová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klára Svojšová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Vrbacká
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Victoria C Robins
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Abbigail Taylor
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Lauren Martin
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ana Rivas-Chavez
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Riley Payne
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Heidi A Bleyer
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adrienne Williams
- Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Helmut G Rennke
- Pathology Department, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Astrid Weins
- Pathology Department, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Varun Agrawal
- Division of Nephrology and Hypertension, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Leroy J Storsley
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sushrut S Waikar
- Section of Nephrology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Nelson Leung
- Division of Nephrology and Hypertension, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tom Hewlett
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jake Yorke
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Gaston
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laurette Geldenhuys
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Samuels
- Department of Medicine Université de Montréal, Montreal, Quebec, Canada; Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada; Centre de Recherche du CHU Ste-Justine, Montreal, Quebec, Canada
| | - Adam P Levine
- Research Department of Pathology, University College London, London, UK
| | - Michael West
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Helena Hůlková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Institute of Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pompach
- Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Richard B Weinberg
- Section on Gastroenterology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA; Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Karen Bedard
- Department of Pathology and Laboratory Medicine, Izaak Walton Killam Hospital, Halifax Nova Scotia, Canada
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Institute of Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
5
|
Satarug S. Is Chronic Kidney Disease Due to Cadmium Exposure Inevitable and Can It Be Reversed? Biomedicines 2024; 12:718. [PMID: 38672074 PMCID: PMC11048639 DOI: 10.3390/biomedicines12040718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Cadmium (Cd) is a metal with no nutritional value or physiological role. However, it is found in the body of most people because it is a contaminant of nearly all food types and is readily absorbed. The body burden of Cd is determined principally by its intestinal absorption rate as there is no mechanism for its elimination. Most acquired Cd accumulates within the kidney tubular cells, where its levels increase through to the age of 50 years but decline thereafter due to its release into the urine as the injured tubular cells die. This is associated with progressive kidney disease, which is signified by a sustained decline in the estimated glomerular filtration rate (eGFR) and albuminuria. Generally, reductions in eGFR after Cd exposure are irreversible, and are likely to decline further towards kidney failure if exposure persists. There is no evidence that the elimination of current environmental exposure can reverse these effects and no theoretical reason to believe that such a reversal is possible. This review aims to provide an update on urinary and blood Cd levels that were found to be associated with GFR loss and albuminuria in the general populations. A special emphasis is placed on the mechanisms underlying albumin excretion in Cd-exposed persons, and for an accurate measure of the doses-response relationships between Cd exposure and eGFR, its excretion rate must be normalised to creatinine clearance. The difficult challenge of establishing realistic Cd exposure guidelines such that human health is protected, is discussed.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
6
|
Wever BMM, Steenbergen RDM. Unlocking the potential of tumor-derived DNA in urine for cancer detection: methodological challenges and opportunities. Mol Oncol 2024. [PMID: 38462745 DOI: 10.1002/1878-0261.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
High cancer mortality rates and the rising cancer burden worldwide drive the development of innovative methods in order to advance cancer diagnostics. Urine contains a viable source of tumor material and allows for self-collection from home. Biomarker testing in this liquid biopsy represents a novel approach that is convenient for patients and can be effective in detecting cancer at a curable stage. Here, we set out to provide a detailed overview of the rationale behind urine-based cancer detection, with a focus on non-urological cancers, and its potential for cancer diagnostics. Moreover, evolving methodological challenges and untapped opportunities for urine biomarker testing are discussed, particularly emphasizing DNA methylation of tumor-derived cell-free DNA. We also provide future recommendations for technical advancements in urine-based cancer detection and elaborate on potential mechanisms involved in the transrenal transport of cell-free DNA.
Collapse
Affiliation(s)
- Birgit M M Wever
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands
| |
Collapse
|
7
|
Paukner K, Filipejova Z, Mareš J, Vávra M, Rehakova K, Proks P, Gabriel V, Crha M. A comprehensive analysis of albuminuria in canine chronic kidney disease. Vet Med Sci 2024; 10:e1403. [PMID: 38419297 PMCID: PMC10902581 DOI: 10.1002/vms3.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Albuminuria, an important marker of decreased kidney function in chronic kidney disease (CKD), is not routinely used for CKD detection or proteinuria appearance. Its relationships with biochemical parameters and blood pressure in dogs are poorly understood. OBJECTIVES This study aimed to evaluate the relationship of albuminuria with various CKD markers, its correlation with the urinary protein to creatinine ratio (UPC), and hypertension in dogs with early stages of CKD. It also sought to determine the usability of the urinary albumin to creatinine ratio (UAC) for CKD screening. METHODS The study reviewed records of 102 dogs, categorising them into four groups based on disease status. UAC and UPC ratio, biochemistry and haematology variables, age, and systolic blood pressure were determined. RESULTS The Pearson's correlation coefficient between log-transformed values of UPC and UAC was r = 0.902 (95% CI: 0.87 to 0.93). Median UAC ratio values were 2.1 mg/g for the Healthy control group (n = 17), 54.2 mg/g for early stages CKD (n = 42), 5.8 mg/g for Acute sick control (n = 30), and 104 mg/g for Chronic sick control (n = 13). Thresholding UAC ratio as an indicator for impaired kidney function with the threshold of 10 mg/g (established based on the receiver operating characteristic curve) had a sensitivity 81.8%, specificity of 89.4%, positive predictive value (PPV) 90%, and negative predictive value (NPV) 80.1%. The correlation of UAC with biochemistry and haematology variables was statistically significant; for SDMA (μg/L), it was r = 0.566 and for other variables, it was weak to moderate. UAC was markedly elevated in cases of severe hypertension. CONCLUSIONS UAC ratio was significantly different among dogs with impaired and not impaired kidney function. The correlation strength for the UAC and UPC ratios was high. UAC ratio may be a promising marker for proteinuria analysis in dogs with CKD or other kidney function alterations.
Collapse
Affiliation(s)
- Karel Paukner
- Small Animal ClinicUniversity of Veterinary Sciences BrnoBrnoCzech Republic
- Center for Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Zita Filipejova
- Small Animal ClinicUniversity of Veterinary Sciences BrnoBrnoCzech Republic
| | - Jan Mareš
- Department of Data ScienceInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Miloš Vávra
- Small Animal ClinicUniversity of Veterinary Sciences BrnoBrnoCzech Republic
| | - Kristina Rehakova
- Small Animal Clinical LaboratoryUniversity of Veterinary Sciences BrnoBrnoCzech Republic
| | - Pavel Proks
- Small Animal ClinicUniversity of Veterinary Sciences BrnoBrnoCzech Republic
| | - Vojtech Gabriel
- Department of Biomedical SciencesCollege of Veterinary Medicine, Iowa State UniversityAmesIowaUSA
| | - Michal Crha
- Small Animal ClinicUniversity of Veterinary Sciences BrnoBrnoCzech Republic
| |
Collapse
|
8
|
Romero-González G, Rodríguez-Chitiva N, Cañameras C, Paúl-Martínez J, Urrutia-Jou M, Troya M, Soler-Majoral J, Graterol Torres F, Sánchez-Bayá M, Calabia J, Bover J. Albuminuria, Forgotten No More: Underlining the Emerging Role in CardioRenal Crosstalk. J Clin Med 2024; 13:777. [PMID: 38337471 PMCID: PMC10856688 DOI: 10.3390/jcm13030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Kidneys have an amazing ability to adapt to adverse situations, both acute and chronic. In the presence of injury, the kidney is able to activate mechanisms such as autoregulation or glomerular hyperfiltration to maintain the glomerular filtration rate (GFR). While these adaptive mechanisms can occur in physiological situations such as pregnancy or high protein intake, they can also occur as an early manifestation of diseases such as diabetes mellitus or as an adaptive response to nephron loss. Although over-activation of these mechanisms can lead to intraglomerular hypertension and albuminuria, other associated mechanisms related to the activation of inflammasome pathways, including endothelial and tubular damage, and the hemodynamic effects of increased activity of the renin-angiotensin-aldosterone system, among others, are recognized pathways for the development of albuminuria. While the role of albuminuria in the progression of chronic kidney disease (CKD) is well known, there is increasing evidence of its negative association with cardiovascular events. For example, the presence of albuminuria is associated with an increased likelihood of developing heart failure (HF), even in patients with normal GFR, and the role of albuminuria in atherosclerosis has recently been described. Albuminuria is associated with adverse outcomes such as mortality and HF hospitalization. On the other hand, it is increasingly known that the systemic effects of congestion are mainly preceded by increased central venous pressure and transmitted retrogradely to organs such as the liver or kidney. With regard to the latter, a new entity called congestive nephropathy is emerging, in which increased renal venous pressure can lead to albuminuria. Fortunately, the presence of albuminuria is modifiable and new treatments are now available to reverse this common risk factor in the cardiorenal interaction.
Collapse
Affiliation(s)
- Gregorio Romero-González
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- International Renal Research Institute of Vicenza, 36100 Vicenza, Italy
| | - Néstor Rodríguez-Chitiva
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Carles Cañameras
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
| | - Javier Paúl-Martínez
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Marina Urrutia-Jou
- Nephrology Department, University Hospital Joan XXIII, 43005 Tarragona, Spain;
| | - Maribel Troya
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Jordi Soler-Majoral
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Fredzzia Graterol Torres
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maya Sánchez-Bayá
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Jordi Calabia
- Nephrology Department, University Hospital Josep Trueta, IdIBGi Research Institute, Universitat de Girona, 17007 Girona, Spain;
| | - Jordi Bover
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|
9
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. The pathogenesis of albuminuria in cadmium nephropathy. Curr Res Toxicol 2023; 6:100140. [PMID: 38116328 PMCID: PMC10726218 DOI: 10.1016/j.crtox.2023.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Background Urinary cadmium excretion (ECd) rises with renal tissue content of the metal. Whereas glomerulopathies are sometimes associated with massive albuminuria, tubular accumulation of Cd typically causes modest albuminuria. Since β2-microglobulinuria (Eβ2M) is an established marker of proximal tubular dysfunction, we hypothesized that a comparison of albuminuria (Ealb) to Eβ2M in Cd-exposed subjects would provide evidence of similar mishandling of both proteins. Methods To depict excretion rates per functional nephron, ECd, Ealb, and Eβ2M were normalized to creatinine clearance (Ccr), a surrogate for the glomerular filtration rate (GFR). Estimation of GFR itself (eGFR) was accomplished with CKD-EPI formulas (2009). Linear and logistic regression analyses were performed to relate Ealb/Ccr, Eβ2M/Ccr, and eGFR to several independent variables. Simple linear regressions of eGFR, Ealb/Ccr, and Eβ2M/Ccr on ECd/Ccr were examined before and after adjustment of dependent variables for age. All regressions were performed after log-transformation of ratios and standardization of all variables. Increments in Ealb/Ccr and Eβ2M/Ccr and decrements in eGFR were quantified through four quartiles of ECd/Ccr. Results As age or ECd/Ccr rose, Ealb/Ccr and Eβ2M/Ccr also rose, and eGFR fell. In linear regressions, slopes relating Ealb/Ccr and Eβ2M/Ccr to ECd/Ccr were similar. After adjustment of dependent variables for age, coefficients of determination (R2) for all regressions rose by a multiple, and slopes approached unity. Ealb/Ccr and Eβ2M/Ccr were similarly associated with each other. Mean Ealb/Ccr and Eβ2M/Ccr rose and mean eGFR fell in stepwise fashion through quartiles of ECd/Ccr. Whereas Eβ2M/Ccr did not vary with blood pressure, Ealb/Ccr rose in association with hypertension in two of the four quartiles. Conclusions Our data indicate that Cd in renal tissue affected tubular reabsorption of albumin and β2M similarly in a large cohort of exposed subjects. The results suggest that Cd reduced receptor-mediated endocytosis and subsequent lysosomal degradation of each protein by a shared mechanism.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Kenneth R. Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
10
|
Molitoris BA, Dunn KW, Sandoval RM. Proximal tubule role in albumin homeostasis: controversy, species differences, and the contributions of intravital microscopy. Kidney Int 2023; 104:1065-1069. [PMID: 37981429 DOI: 10.1016/j.kint.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Saulnier PJ, Looker HC, Layton A, Lemley KV, Nelson RG, Bjornstad P. Loss of Glomerular Permselectivity in Type 2 Diabetes Associates With Progression to Kidney Failure. Diabetes 2023; 72:1682-1691. [PMID: 37586079 PMCID: PMC10588283 DOI: 10.2337/db23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
We examined whether defects in glomerular size selectivity in type 2 diabetes are associated with progressive kidney disease. Glomerular filtration rate (GFR) and fractional clearances of dextrans of graded sizes were measured in 185 American Indians. The permselectivity model that best fit the dextran sieving data represented the glomerular capillary as being perforated by small restrictive pores and a parallel population of larger nonrestrictive pores characterized by ω0, the fraction of total filtrate volume passing through this shunt. The hazard ratio (HR) for kidney failure was expressed per 1-SD increase of ω0 by Cox regression after adjusting for age, sex, mean arterial pressure, HbA1c, GFR, and the urine albumin-to-creatinine ratio (ACR). Baseline mean ± SD age was 43 ± 10 years, HbA1c 8.9 ± 2.5%, GFR 147 ± 46 mL/min, and median (interquartile range) ACR 41 (11-230) mg/g. During a median follow-up of 17.7 years, 67 participants developed kidney failure. After adjustment, each 1-SD increment in ω0 was associated with a higher risk of kidney failure (HR 1.55 [95% CI 1.17, 2.05]). Enhanced transglomerular passage of test macromolecules was associated with progression to kidney failure, independent of albuminuria and GFR, suggesting that mechanisms associated with impaired glomerular permselectivity are important determinants of progressive kidney disease. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Pierre J. Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
- University of Poitiers, INSERM CIC1402, Poitiers, France
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Anita Layton
- University of Waterloo, Waterloo, Ontario, Canada
| | - Kevin V. Lemley
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | | |
Collapse
|
12
|
Pierre CC, Marzinke MA, Ahmed SB, Collister D, Colón-Franco JM, Hoenig MP, Lorey T, Palevsky PM, Palmer OP, Rosas SE, Vassalotti J, Whitley CT, Greene DN. AACC/NKF Guidance Document on Improving Equity in Chronic Kidney Disease Care. J Appl Lab Med 2023:jfad022. [PMID: 37379065 DOI: 10.1093/jalm/jfad022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Kidney disease (KD) is an important health equity issue with Black, Hispanic, and socioeconomically disadvantaged individuals experiencing a disproportionate disease burden. Prior to 2021, the commonly used estimated glomerular filtration rate (eGFR) equations incorporated coefficients for Black race that conferred higher GFR estimates for Black individuals compared to non-Black individuals of the same sex, age, and blood creatinine concentration. With a recognition that race does not delineate distinct biological categories, a joint task force of the National Kidney Foundation and the American Society of Nephrology recommended the adoption of the CKD-EPI 2021 race-agnostic equations. CONTENT This document provides guidance on implementation of the CKD-EPI 2021 equations. It describes recommendations for KD biomarker testing, and opportunities for collaboration between clinical laboratories and providers to improve KD detection in high-risk populations. Further, the document provides guidance on the use of cystatin C, and eGFR reporting and interpretation in gender-diverse populations. SUMMARY Implementation of the CKD-EPI 2021 eGFR equations represents progress toward health equity in the management of KD. Ongoing efforts by multidisciplinary teams, including clinical laboratorians, should focus on improved disease detection in clinically and socially high-risk populations. Routine use of cystatin C is recommended to improve the accuracy of eGFR, particularly in patients whose blood creatinine concentrations are confounded by processes other than glomerular filtration. When managing gender-diverse individuals, eGFR should be calculated and reported with both male and female coefficients. Gender-diverse individuals can benefit from a more holistic management approach, particularly at important clinical decision points.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Pathology and Laboratory Medicine, Penn Medicine Lancaster General Hospital, Lancaster, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark A Marzinke
- Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sofia B Ahmed
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Collister
- Division of Nephrology, University of Alberta, Edmonton, AB, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | | | - Melanie P Hoenig
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Thomas Lorey
- Kaiser Permanante, The Permanante Medical Group Regional Laboratory, Berkeley, CA, United States
| | - Paul M Palevsky
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Kidney Medicine Program and Kidney Medicine Section, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- The National Kidney Foundation, Inc., New York, NY, United States
| | - Octavia Peck Palmer
- Departments of Pathology, Critical Care Medicine, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sylvia E Rosas
- The National Kidney Foundation, Inc., New York, NY, United States
- Kidney and Hypertension Unit, Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Joseph Vassalotti
- The National Kidney Foundation, Inc., New York, NY, United States
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cameron T Whitley
- Department of Sociology, Western Washington University, Bellingham, WA, United States
| | - Dina N Greene
- Department of Laboratory Medicine and Pathology, University of Washington Medicine, Seattle, WA, United States
- LetsGetChecked Laboratories, Monrovia, CA, United States
| |
Collapse
|
13
|
Yamamoto R, Isaka Y. Albumin Clearance as a Novel Predictor of Relapse in Adults with Minimal Change Nephrotic Syndrome. KIDNEY360 2023; 4:e720-e721. [PMID: 37384885 PMCID: PMC10371273 DOI: 10.34067/kid.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Ryohei Yamamoto
- Health and Counseling Center, Osaka University, Toyonaka, Japan
- Laboratory of Behavioral Health Promotion, Department of Health Promotion, Graduate School of Medicine, Osaka University, Toyonaka, Japan
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Isiktas O, Guzel FB, Ozturk I, Topal K, Sahin M, Altunoren O, Gungor O. The frequency of sarcopenia has increased in patients with glomerulonephritis. Nephrology (Carlton) 2023. [PMID: 37148150 DOI: 10.1111/nep.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
AIM Sarcopenia is defined as the loss of muscle mass and muscle strength, and its frequency increases in kidney patients. However, sarcopenia frequency in patients with glomerulonephritis is unknown. The present study aimed to investigate the frequency of sarcopenia in patients with glomerulonephritis and compare the results with the healthy population for the first time in the literature. PATIENTS AND METHODS A total of 110 participants, including 70 patients previously diagnosed with glomerulonephritis and 40 healthy individuals, were included in the study. The diagnosis of sarcopenia was made based on the EWSGOP 2 Criteria. RESULTS The mean age of the glomerulonephritis patients group was 39.3 ± 1.5. In the anthropometric measurements of the patients, walking speed was low in 50 patients (71.4%), muscle strength was decreased in 44 patients (62.9%), and sarcopenia was detected in 10 patients (14.3%) according to the EWGSOP 2 Criteria. Considering the anthropometric measurements of the control group, sarcopenia was not detected in any of the subjects according to the EWGSOP 2 Criteria. CONCLUSION The result of the present study revealed that the rate of sarcopenia was significantly higher in glomerulonephritis patients compared to the healthy population and that sarcopenia can also be observed even in middle age in this population. We think it would be beneficial for clinicians treating glomerulonephritis to be more careful regarding sarcopenia and keep these parameters in mind during treatment.
Collapse
Affiliation(s)
- Okay Isiktas
- Department of Internal Medicine, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Fatma Betul Guzel
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ilyas Ozturk
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Kenan Topal
- Adana City Training and Research Hospital, Department of Family Medicine, Health Sciences University, Adana, Turkey
| | - Murat Sahin
- Department of Endocrinology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Orcun Altunoren
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ozkan Gungor
- Department of Nephrology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
15
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Cadmium-Induced Proteinuria: Mechanistic Insights from Dose-Effect Analyses. Int J Mol Sci 2023; 24:ijms24031893. [PMID: 36768208 PMCID: PMC9915107 DOI: 10.3390/ijms24031893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that accumulates in kidneys, especially in the proximal tubular epithelial cells, where virtually all proteins in the glomerular ultrafiltrate are reabsorbed. Here, we analyzed archived data on the estimated glomerular filtration rate (eGFR) and excretion rates of Cd (ECd), total protein (EProt), albumin (Ealb), β2-microglobulin (Eβ2M), and α1-microglobulin (Eα1M), which were recorded for residents of a Cd contamination area and a low-exposure control area of Thailand. Excretion of Cd and all proteins were normalized to creatinine clearance (Ccr) as ECd/Ccr and EProt/Ccr to correct for differences among subjects in the number of surviving nephrons. Low eGFR was defined as eGFR ≤ 60 mL/min/1.73 m2, while proteinuria was indicted by EPro/Ccr ≥ 20 mg/L of filtrate. EProt/Ccr varied directly with ECd/Ccr (β = 0.263, p < 0.001) and age (β = 0.252, p < 0.001). In contrast, eGFR values were inversely associated with ECd/Ccr (β = -0.266, p < 0.001) and age (β = -0.558, p < 0.001). At ECd/Ccr > 8.28 ng/L of filtrate, the prevalence odds ratios for proteinuria and low eGFR were increased 4.6- and 5.1-fold, respectively (p < 0.001 for both parameters). Thus, the eGFR and tubular protein retrieval were both simultaneously diminished by Cd exposure. Of interest, ECd/Ccr was more closely correlated with EProt/Ccr (r = 0.507), Eβ2M (r = 0.430), and Eα1M/Ccr (r = 0.364) than with EAlb/Ccr (r = 0.152). These data suggest that Cd may differentially reduce the ability of tubular epithelial cells to reclaim proteins, resulting in preferential reabsorption of albumin.
Collapse
|