1
|
Jang J, Bentsen M, Bu J, Chen L, Campos AR, Looso M, Li D. HDAC7 promotes cardiomyocyte proliferation by suppressing myocyte enhancer factor 2. J Mol Cell Biol 2025; 16:mjae044. [PMID: 39394661 PMCID: PMC12059635 DOI: 10.1093/jmcb/mjae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle to undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that histone deacetylase 7 (HDAC7)-mediated CM proliferation is contingent on dedifferentiation, which is accomplished by suppressing myocyte enhance factor 2 (MEF2). Hdac7 overexpression in CM shifts the chromatin state from binding with MEF2, which favors the transcriptional program toward differentiation, to binding with AP-1, which favors the transcriptional program toward proliferation. Furthermore, we found that HDAC7 interacts with minichromosome maintenance complex components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jin Bu
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexandre Rosa Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Gil-Melgosa L, Llombart-Blanco R, Extramiana L, Lacave I, Abizanda G, Miranda E, Agirre X, Prósper F, Pineda-Lucena A, Pons-Villanueva J, Pérez-Ruiz A. HDACi vorinostat protects muscle from degeneration after acute rotator cuff injury in mice. Bone Joint Res 2024; 13:169-183. [PMID: 38618868 PMCID: PMC11017234 DOI: 10.1302/2046-3758.134.bjr-2023-0292.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Aims Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. Methods HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential. Results Vorinostat, a HDACi compound, blocked the adipogenic transformation of muscle-associated FAPs in culture, promoting myogenic progression of the satellite cells. Furthermore, it protected muscle from degeneration after acute RC in mice in the earlier muscle degenerative stage after tenotomy. Conclusion The HDACi vorinostat may be a candidate to prevent early muscular degeneration after RC injury.
Collapse
Affiliation(s)
- Lara Gil-Melgosa
- Orthopedic Surgery Department of Clínica Universidad de Navarra (CUN) and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rafael Llombart-Blanco
- Orthopedic Surgery Department of Clínica Universidad de Navarra (CUN) and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Leire Extramiana
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV) and IdiSNA, Pamplona, Spain
| | | | - Gloria Abizanda
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV) and IdiSNA, Pamplona, Spain
| | | | - Xabier Agirre
- Hemato-Oncology Program, FIMA-UNAV and IdiSNA, Pamplona, Spain
| | - Felipe Prósper
- Hemato-Oncology Program, FIMA-UNAV and IdiSNA, Pamplona, Spain
- Haematology Department, Clinica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Juan Pons-Villanueva
- Orthopedic Surgery Department of Clínica Universidad de Navarra (CUN) and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ana Pérez-Ruiz
- Technological Innovation Division, Foundation for Applied Medical Research (FIMA), University of Navarra (UNAV) and IdiSNA, Pamplona, Spain
| |
Collapse
|
5
|
Hart DA. The Heterogeneity of Post-Menopausal Disease Risk: Could the Basis for Why Only Subsets of Females Are Affected Be Due to a Reversible Epigenetic Modification System Associated with Puberty, Menstrual Cycles, Pregnancy and Lactation, and, Ultimately, Menopause? Int J Mol Sci 2024; 25:3866. [PMID: 38612676 PMCID: PMC11011715 DOI: 10.3390/ijms25073866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Schweipert M, Nehls T, Frühauf A, Debarnot C, Kumar A, Knapp S, Lermyte F, Meyer‐Almes F. The catalytic domain of free or ligand bound histone deacetylase 4 occurs in solution predominantly in closed conformation. Protein Sci 2024; 33:e4917. [PMID: 38358265 PMCID: PMC10868454 DOI: 10.1002/pro.4917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition. The catalytic domain of HDAC4 is known to interact with the SMRT/NCOR corepressor complex when the structural zinc-binding domain (sZBD) is intact and forms a closed conformation. Crystal structures of the HDAC4 catalytic domain have been reported showing an open conformation of HDAC4 when bound to certain ligands. Here, we investigated the relevance of this HDAC4 conformation under physiological conditions in solution. We show that proper zinc chelation in the sZBD is essential for enzyme function. Loss of the structural zinc ion not only leads to a massive decrease in enzyme activity, but it also has serious consequences for the overall structural integrity and stability of the protein. However, the Zn2+ free HDAC4 structure in solution is incompatible with the open conformation. In solution, the open conformation of HDAC4 was also not observed in the presence of a variety of structurally divergent ligands. This suggests that the open conformation of HDAC4 cannot be induced in solution, and therefore cannot be exploited for the development of HDAC4-specific inhibitors.
Collapse
Affiliation(s)
- Markus Schweipert
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| | - Thomas Nehls
- Department of ChemistryClemens‐Schöpf‐Institute of Chemistry and Biochemistry, Technical University of DarmstadtDarmstadtGermany
| | - Anton Frühauf
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| | - Cecilé Debarnot
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| | - Adarsh Kumar
- Fachbereich Biochemie, Chemie und PharmazieInstitut für Pharmazeutische Chemie, Goethe‐University FrankfurtFrankfurt Am MainGermany
| | - Stefan Knapp
- Fachbereich Biochemie, Chemie und PharmazieInstitut für Pharmazeutische Chemie, Goethe‐University FrankfurtFrankfurt Am MainGermany
| | - Frederik Lermyte
- Department of ChemistryClemens‐Schöpf‐Institute of Chemistry and Biochemistry, Technical University of DarmstadtDarmstadtGermany
| | - Franz‐Josef Meyer‐Almes
- Department of Chemical Engineering and BiotechnologyUniversity of Applied SciencesDarmstadtGermany
| |
Collapse
|
7
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Sun J, Zhang L, Cheng Q, Wu Y. Aberrant expression and regulatory role of histone deacetylase 9 in vascular endothelial cell injury in intracranial aneurysm. BIOMOLECULES & BIOMEDICINE 2024; 24:61-72. [PMID: 37573538 PMCID: PMC10787617 DOI: 10.17305/bb.2023.9364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Intracranial aneurysm (IA) is one of the most challenging cerebrovascular lesions for clinicians. The aim of this study was to investigate the abnormal expression and role of histone deacetylase 9 (HDAC9) in IA-associated injury of vascular endothelial cells (VECs). First, IA tissue and normal arterial tissue were collected and VECs were isolated from IA patients. The expression levels of HDAC9, microRNA (miR)-34a-5p, and vascular endothelial growth factor-A (VEGFA) were determined. Cell viability, proliferation, apoptosis, and migration were assessed by Cell Counting Kit-8 (CCK-8) assay, EdU staining, TUNEL staining, and transwell assay. The binding of miR-34a-5p to VEGFA was analyzed by the dual-luciferase assay, and the accumulation of HDAC9 and lysine histone acetylation at H3 (H3K9, H3K14, and H3K18) on the miR-34a-5p promoter was detected by the chromatin immunoprecipitation assay. The results showed that HDAC9 and VEGFA were increased and miR-34a-5p was decreased in IA tissues and cells. Silencing of HDAC9 inhibited apoptosis and increased viability, proliferation, and migration of VECs, whereas overexpression of HDAC9 exerted the opposite functions. HDAC9 accumulated at the miR-34a-5p promoter to decrease miR-34a-5p expression by reducing H3 locus-specific acetylation and further promoted VEGFA expression. Knockdown of miR-34a-5p or VEGFA overexpression reversed the protective role of HDAC9 silencing in VECs injury. In conclusion, our study suggests that HDAC9 may be a therapeutic target for IA.
Collapse
Affiliation(s)
- Jingwei Sun
- Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Langfeng Zhang
- Interventional Treatment Department, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Quanjiang Cheng
- Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yajun Wu
- Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
9
|
Man E, Evran S. Deacetylation of Histones and Non-histone Proteins in Inflammatory Diseases and Cancer Therapeutic Potential of Histone Deacetylase Inhibitors. Curr Genomics 2023; 24:136-145. [PMID: 38178983 PMCID: PMC10761333 DOI: 10.2174/0113892029265046231011100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 01/06/2024] Open
Abstract
Epigenetic changes play an important role in the pathophysiology of autoimmune diseases such as allergic asthma, multiple sclerosis, lung diseases, diabetes, cystic fibrosis, atherosclerosis, rheumatoid arthritis, and COVID-19. There are three main classes of epigenetic alterations: post-translational modifications of histone proteins, control by non-coding RNA and DNA methylation. Since histone modifications can directly affect chromatin structure and accessibility, they can regulate gene expression levels. Abnormal expression and activity of histone deacetylases (HDACs) have been reported in immune mediated diseases. Increased acetylated levels of lysine residues have been suggested to be related to the overexpression of inflammatory genes. This review focuses on the effect of HDAC modifications on histone and non-histone proteins in autoimmune diseases. Furthermore, we discuss the potential therapeutic effect of HDAC inhibitors (HDACi) used in these diseases.
Collapse
Affiliation(s)
- Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, Bornova-Izmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Türkiye
| |
Collapse
|
10
|
Mukherjee A, Zamani F, Suzuki T. Evolution of Slow-Binding Inhibitors Targeting Histone Deacetylase Isoforms. J Med Chem 2023; 66:11672-11700. [PMID: 37651268 DOI: 10.1021/acs.jmedchem.3c01160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Because the overexpression of histone deacetylase enzymes (HDACs) has been linked to numerous diseases, including various cancers and neurodegenerative disorders, HDAC inhibitors have emerged as promising therapeutic agents. However, most HDAC inhibitors lack both subclass and isoform selectivity, which leads to potential toxicity. Unlike classical hydroxamate HDAC inhibitors, slow-binding HDAC inhibitors form tight and prolonged bonds with HDAC enzymes. This distinct mechanism of action improves both selectivity and toxicity profiles, which makes slow-binding HDAC inhibitors a promising class of therapeutic agents for various diseases. Therefore, the development of slow-binding HDAC inhibitors that can effectively target a wide range of HDAC isoforms is crucial. This Perspective provides valuable insights into the potential and progress of slow-binding HDAC inhibitors as promising drug candidates for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Farzad Zamani
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
11
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|