1
|
Li L, Ma J, Li Z, Chen J, Zhou J, Wang Y, Pei Y, Gong Y, You J, Cao Y, Wang M, Chen J, Chang W, Ma W, Zhu H, Xiang C, Xu S, Song Q. Huoxiang Zhengqi dropping pills alleviate exertional heat stroke-induced multiple organ injury through sustaining intestinal homeostasis via regulating MAPK/NF-κB pathway and gut microbiota in rats. Front Pharmacol 2025; 15:1534713. [PMID: 39840114 PMCID: PMC11747358 DOI: 10.3389/fphar.2024.1534713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening condition characterized by hyperthermia and multi-organ dysfunction, often associated with intestinal barrier disruption. This study evaluated the protective effects of Huoxiang Zhengqi Dropping Pills (HXZQD) against EHS in a rat model. HXZQD was administered via oral gavage at low, medium, and high doses, followed by EHS induction through exercise under high-temperature and high-humidity conditions. The findings revealed that high-dose HXZQD significantly delayed the onset of EHS, reduced core body temperature elevations, and mitigated multi-organ injury, as evidenced by biochemical markers and histopathological examination. This study showed that HXZQD alleviated EHS-induced intestinal damage by preserving barrier proteins (ZO-1, Occludin, and Ecadherin) and maintaining intestinal barrier integrity. Transmission electron microscopy confirmed the preservation of tight junction structures. Further analysis indicated that HXZQD modulated the MAPK/NF-κB signaling pathways, inhibiting heat stress-induced activation and reducing inflammation. Additionally, HXZQD positively regulated gut microbiota, increasing the proportion of beneficial Lactococcus and decreasing harmful Streptococcus. These findings suggest that HXZQD maintains intestinal homeostasis during EHS by preserving barrier function and modulating gut microbiota, offering a promising preventive approach for EHS management.
Collapse
Affiliation(s)
- Lei Li
- Heat Stroke Treatment and Research Center of Chinese PLA General Hospital, Sanya, China
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Sanya, China
| | - Jun Ma
- Heat Stroke Treatment and Research Center of Chinese PLA General Hospital, Sanya, China
- Department of Critical Care Medicine, Hainan Hospital, Chinese PLA General Hospital, Sanya, China
| | - Zeshi Li
- Heat Stroke Treatment and Research Center of Chinese PLA General Hospital, Sanya, China
- Department of Critical Care Medicine, Hainan Hospital, Chinese PLA General Hospital, Sanya, China
| | - Juelin Chen
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiawei Zhou
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yawei Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yankun Pei
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yitong Gong
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianyao You
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yangyang Cao
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Man Wang
- Department of Rehabilitation and Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wenjun Chang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Weiyi Ma
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hanyu Zhu
- National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuhan Xiang
- Department of Cardiology, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuogui Xu
- Department of Critical Care Medicine, Hainan Hospital, Chinese PLA General Hospital, Sanya, China
| | - Qing Song
- Heat Stroke Treatment and Research Center of Chinese PLA General Hospital, Sanya, China
- Department of Critical Care Medicine, Hainan Hospital, Chinese PLA General Hospital, Sanya, China
| |
Collapse
|
2
|
赵 金, 贾 亿, 毛 汉, 王 世, 徐 凡, 李 鑫, 陶 冶, 薛 蕾, 刘 树, 宋 青, 周 必. [Effect of different delayed cooling time on organ injuries in rat models of exertional heat stroke]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1858-1865. [PMID: 39523085 PMCID: PMC11526461 DOI: 10.12122/j.issn.1673-4254.2024.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 11/16/2024]
Abstract
METHODS To investigate how the timing of cooling therapy affects organ injuries in rats with exertional heat stroke (EHS) and explore the possible mechanisms. METHODS A total of 60 adult male Wistar rat models of EHS were randomized into model group without active cooling after modeling, immediate cooling group with cold water bath immediately after modeling, delayed cooling groups with cold water bath at 5, 15 and 30 min after modeling, with another 12 mice without EHS as the normal control group. The changes in core body temperature of the mice were recorded and the cooling rate was calculated. After observation for 24 h, the mice were euthanized and blood samples were collected for detection of interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-10, and interferon-γ, followed by pathological examination of the vital organs. The rats that died within 24 h were immediately dissected for examination. RESULTS The number of deaths of the model rats within 24 h increased significantly with the time of delay of cooling treatment. The delay of cooling was positively correlated (r=0.996, P=0.004) while the cooling rate negatively correlated with the mortality rate (r=-0.961, P=0.009). The inflammatory cytokine levels presented with different patterns of variations among the cooling intervention groups. All the rat models of EHS had significant organ damages characterized mainly by epithelial shedding, edema, effusion, and inflammatory cell infiltration, and brain and renal injuries reached the peak level at 24 h after EHS. CONCLUSION EHS causes significant nonspecific pathologies of varying severities in the vital organs of rats, and the injuries worsen progressively with the delay of cooling. There is a significant heterogeneity in changes of serum inflammatory cytokines in rats with different timing of cooling intervention following EHS.
Collapse
|
3
|
Zhong Z, Wu M, Yang T, Nan X, Zhang S, Zhang L, Jin L. Integrated transcriptomic and proteomic analyses uncover the early response mechanisms of Catharanthus roseus under ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112862. [PMID: 38330691 DOI: 10.1016/j.jphotobiol.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tiancai Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaoyue Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Limin Jin
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, PR China.
| |
Collapse
|
4
|
Wang L, Fu X, He M, Shi L, Wan D, Wang Y, Wu Q, Yang J, Cai B, Xia H, Chen H, Zhang G, Lei X, Zhang W, Feng Z, Wang B, Zhang Z. Risk Factor Analysis and Nomogram for Predicting In-Hospital Mortality in ICU Patients with Heat Stroke: A National Multicenter Study. J Multidiscip Healthc 2023; 16:3189-3201. [PMID: 37915977 PMCID: PMC10617527 DOI: 10.2147/jmdh.s428617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Objective The aim of this nationwide multicenter study was to ascertain the risk factors associated with in-hospital mortality in patients with heat stroke admitted to intensive care units (ICUs) and to develop a nomogram for prognostic prediction. Methods A retrospective analysis was conducted on clinical data collected from ICU patients diagnosed with heat stroke across multiple centers nationwide. Univariate and multivariate logistic regression analyses were performed to identify significant risk factors for in-hospital mortality. Based on the results of the multivariate analysis, a nomogram was constructed to estimate the individualized probability of mortality. Internal validation of the nomogram was performed, and its performance was assessed using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA). Results A total of 292 ICU patients with heat stroke were included in this study. Three risk factors, namely Cr (creatinine), AST (aspartate aminotransferase), and SBP (systolic blood pressure), were found to be significantly associated with in-hospital mortality. These risk factors were incorporated into the nomogram, which exhibited good discriminative ability (area under the ROC curve of the training and validation cohorts were 0.763 and 0.739, respectively) and calibration. Internal validation and decision curve analysis confirmed the stability and reliability of the nomogram. Conclusion This nationwide multicenter study identified key risk factors for in-hospital mortality in ICU patients with heat stroke. The developed nomogram provides an individualized prediction of mortality risk and can serve as a valuable tool for clinicians in the assessment and management of ICU patients with heat stroke.
Collapse
Affiliation(s)
- Lietao Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Fu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Lvyuan Shi
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dingyuan Wan
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yucong Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Bayuan Cai
- Department of Critical Care Medicine, The People’s Hospital of Jiajiang, Leshan, People’s Republic of China
| | - Hongtao Xia
- Department of Critical Care Medicine, Suining Central Hospital, Suining, People’s Republic of China
| | - Hongxu Chen
- Department of Critical Care Medicine, The Hospital of Traditional Chinese Medicine of Leshan, Leshan, People’s Republic of China
| | - Ge Zhang
- Department of Critical Care Medicine, The First People’s Hospital of Longquanyi District, Chengdu, People’s Republic of China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, People’s Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, People’s Republic of China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhongwei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - On behalf of Heat Stroke Research Group in Southwestern China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Critical Care Medicine, The People’s Hospital of Jiajiang, Leshan, People’s Republic of China
- Department of Critical Care Medicine, Suining Central Hospital, Suining, People’s Republic of China
- Department of Critical Care Medicine, The Hospital of Traditional Chinese Medicine of Leshan, Leshan, People’s Republic of China
- Department of Critical Care Medicine, The First People’s Hospital of Longquanyi District, Chengdu, People’s Republic of China
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, People’s Republic of China
| |
Collapse
|