1
|
Shen K, Durieux J, Mena CG, Webster BM, Tsui CK, Zhang H, Joe L, Berendzen KM, Dillin A. The germline coordinates mitokine signaling. Cell 2024; 187:4605-4620.e17. [PMID: 38959891 DOI: 10.1016/j.cell.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/01/2024] [Accepted: 06/08/2024] [Indexed: 07/05/2024]
Abstract
The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.
Collapse
Affiliation(s)
- Koning Shen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cesar G Mena
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brant M Webster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C Kimberly Tsui
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hanlin Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristen M Berendzen
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 PMCID: PMC11699537 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
4
|
Held JP, Dbouk NH, Strozak AM, Grub LK, Ryou H, Schaffner SH, Patel MR. Germline status and micronutrient availability regulate a somatic mitochondrial quality control pathway via short-chain fatty acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594820. [PMID: 38826313 PMCID: PMC11142046 DOI: 10.1101/2024.05.20.594820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Reproductive status, such as pregnancy and menopause in women, profoundly influences metabolism of the body. Mitochondria likely orchestrate many of these metabolic changes. However, the influence of reproductive status on somatic mitochondria and the underlying mechanisms remain largely unexplored. We demonstrate that reproductive signals modulate mitochondria in the Caenorhabditis elegans soma. We show that the germline acts via an RNA endonuclease, HOE-1, which despite its housekeeping role in tRNA maturation, selectively regulates the mitochondrial unfolded protein response (UPRmt). Mechanistically, we uncover a fatty acid metabolism pathway acting upstream of HOE-1 to convey germline status. Furthermore, we link vitamin B12's dietary intake to the germline's regulatory impact on HOE-1-driven UPRmt. Combined, our study uncovers a germline-somatic mitochondrial connection, reveals the underlying mechanism, and highlights the importance of micronutrients in modulating this connection. Our findings provide insights into the interplay between reproductive biology and metabolic regulation.
Collapse
Affiliation(s)
- James P. Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nadir H. Dbouk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adrianna M. Strozak
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lantana K. Grub
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hayeon Ryou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Quantitative Systems Biology Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
6
|
Mayer MP, Blair L, Blatch GL, Borges TJ, Chadli A, Chiosis G, de Thonel A, Dinkova-Kostova A, Ecroyd H, Edkins AL, Eguchi T, Fleshner M, Foley KP, Fragkostefanakis S, Gestwicki J, Goloubinoff P, Heritz JA, Heske CM, Hibshman JD, Joutsen J, Li W, Lynes M, Mendillo ML, Mivechi N, Mokoena F, Okusha Y, Prahlad V, Repasky E, Sannino S, Scalia F, Shalgi R, Sistonen L, Sontag E, van Oosten-Hawle P, Vihervaara A, Wickramaratne A, Wang SXY, Zininga T. Stress biology: Complexity and multifariousness in health and disease. Cell Stress Chaperones 2024; 29:143-157. [PMID: 38311120 PMCID: PMC10939078 DOI: 10.1016/j.cstres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Laura Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Thiago J Borges
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gabriela Chiosis
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aurélie de Thonel
- CNRS, UMR 7216, 75250 Paris Cedex 13, Paris, France; Univeristy of Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Albena Dinkova-Kostova
- Division of Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jason Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| | - Michael Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nahid Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Fortunate Mokoena
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Yuka Okusha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elizabeth Repasky
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Anushka Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn Xiang Yang Wang
- Developmental Therapeutics Program, VCU Comprehensive Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|