1
|
De Saeger J, Coulembier Vandelannoote E, Lee H, Park J, Blomme J. Genome editing in macroalgae: advances and challenges. Front Genome Ed 2024; 6:1380682. [PMID: 38516199 PMCID: PMC10955705 DOI: 10.3389/fgeed.2024.1380682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
This minireview examines the current state and challenges of genome editing in macroalgae. Despite the ecological and economic significance of this group of organisms, genome editing has seen limited applications. While CRISPR functionality has been established in two brown (Ectocarpus species 7 and Saccharina japonica) and one green seaweed (Ulva prolifera), these studies are limited to proof-of-concept demonstrations. All studies also (co)-targeted ADENINE PHOSPHORIBOSYL TRANSFERASE to enrich for mutants, due to the relatively low editing efficiencies. To advance the field, there should be a focus on advancing auxiliary technologies, particularly stable transformation, so that novel editing reagents can be screened for their efficiency. More work is also needed on understanding DNA repair in these organisms, as this is tightly linked with the editing outcomes. Developing efficient genome editing tools for macroalgae will unlock the ability to characterize their genes, which is largely uncharted terrain. Moreover, given their economic importance, genome editing will also impact breeding campaigns to develop strains that have better yields, produce more commercially valuable compounds, and show improved resilience to the impacts of global change.
Collapse
Affiliation(s)
- Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Emma Coulembier Vandelannoote
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Yeonsu-gu, Republic of Korea
| | - Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
2
|
|
3
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Alsufyani T, Califano G, Deicke M, Grueneberg J, Weiss A, Engelen AH, Kwantes M, Mohr JF, Ulrich JF, Wichard T. Macroalgal-bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3340-3349. [PMID: 32016363 PMCID: PMC7289720 DOI: 10.1093/jxb/eraa066] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/01/2020] [Indexed: 05/07/2023]
Abstract
Macroalgal microbiomes have core functions related to biofilm formation, growth, and morphogenesis of seaweeds. In particular, the growth and development of the sea lettuce Ulva spp. (Chlorophyta) depend on bacteria releasing morphogenetic compounds. Under axenic conditions, the macroalga Ulva mutabilis develops a callus-like phenotype with cell wall protrusions. However, co-culturing with Roseovarius sp. (MS2) and Maribacter sp. (MS6), which produce various stimulatory chemical mediators, completely recovers morphogenesis. This ecological reconstruction forms a tripartite community which can be further studied for its role in cross-kingdom interactions. Hence, our study sought to identify algal growth- and morphogenesis-promoting factors (AGMPFs) capable of phenocopying the activity of Maribacter spp. We performed bioassay-guided solid-phase extraction in water samples collected from U. mutabilis aquaculture systems. We uncovered novel ecophysiological functions of thallusin, a sesquiterpenoid morphogen, identified for the first time in algal aquaculture. Thallusin, released by Maribacter sp., induced rhizoid and cell wall formation at a concentration of 11 pmol l-1. We demonstrated that gametes acquired the iron complex of thallusin, thereby linking morphogenetic processes with intracellular iron homeostasis. Understanding macroalgae-bacteria interactions permits further elucidation of the evolution of multicellularity and cellular differentiation, and development of new applications in microbiome-mediated aquaculture systems.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Algal Research Laboratory, Chemistry Department, Science Faculty, Taif University, Taif, Saudi Arabia
| | - Gianmaria Califano
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Deicke
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Jan Grueneberg
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Jena, Germany
| | - Anne Weiss
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Jena, Germany
| | - Aschwin H Engelen
- Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Michiel Kwantes
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Jan Frieder Mohr
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Jena, Germany
| | - Johann F Ulrich
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Jena School for Microbial Communication, Jena, Germany
| |
Collapse
|
5
|
Niklas KJ, Newman SA. The many roads to and from multicellularity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3247-3253. [PMID: 31819969 PMCID: PMC7289717 DOI: 10.1093/jxb/erz547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/07/2019] [Indexed: 05/02/2023]
Abstract
The multiple origins of multicellularity had far-reaching consequences ranging from the appearance of phenotypically complex life-forms to their effects on Earth's aquatic and terrestrial ecosystems. Yet, many important questions remain. For example, do all lineages and clades share an ancestral developmental predisposition for multicellularity emerging from genomic and biophysical motifs shared from a last common ancestor, or are the multiple origins of multicellularity truly independent evolutionary events? In this review, we highlight recent developments and pitfalls in understanding the evolution of multicellularity with an emphasis on plants (here defined broadly to include the polyphyletic algae), but also draw upon insights from animals and their holozoan relatives, fungi and amoebozoans. Based on our review, we conclude that the evolution of multicellular organisms requires three phases (origination by disparate cell-cell attachment modalities, followed by integration by lineage-specific physiological mechanisms, and autonomization by natural selection) that have been achieved differently in different lineages.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Correspondence:
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
6
|
Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D'hondt S, Škaloud P, Delwiche CF, Knoll AH, Raven JA, Verbruggen H, Vandepoele K, De Clerck O, Leliaert F. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proc Natl Acad Sci U S A 2020; 117:2551-2559. [PMID: 31911467 PMCID: PMC7007542 DOI: 10.1073/pnas.1910060117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | | | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Sofie D'hondt
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
- School of Biological Sciences, University of Western Australia, WA 6009, Australia
- Climate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium;
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Meise Botanic Garden, 1860 Meise, Belgium
| |
Collapse
|
7
|
Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun 2019; 10:4080. [PMID: 31501435 PMCID: PMC6733946 DOI: 10.1038/s41467-019-12085-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 02/01/2023] Open
Abstract
Hyphae represent a hallmark structure of multicellular fungi. The evolutionary origins of hyphae and of the underlying genes are, however, hardly known. By systematically analyzing 72 complete genomes, we here show that hyphae evolved early in fungal evolution probably via diverse genetic changes, including co-option and exaptation of ancient eukaryotic (e.g. phagocytosis-related) genes, the origin of new gene families, gene duplications and alterations of gene structure, among others. Contrary to most multicellular lineages, the origin of filamentous fungi did not correlate with expansions of kinases, receptors or adhesive proteins. Co-option was probably the dominant mechanism for recruiting genes for hypha morphogenesis, while gene duplication was apparently less prevalent, except in transcriptional regulators and cell wall - related genes. We identified 414 novel gene families that show correlated evolution with hyphae and that may have contributed to its evolution. Our results suggest that hyphae represent a unique multicellular organization that evolved by limited fungal-specific innovations and gene duplication but pervasive co-option and modification of ancient eukaryotic functions.
Collapse
|
8
|
Arimoto A, Nishitsuji K, Higa Y, Arakaki N, Hisata K, Shinzato C, Satoh N, Shoguchi E. A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants. DNA Res 2019; 26:183-192. [PMID: 30918953 PMCID: PMC6476727 DOI: 10.1093/dnares/dsz002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Genome evolution and development of unicellular, multinucleate macroalgae (siphonous algae) are poorly known, although various multicellular organisms have been studied extensively. To understand macroalgal developmental evolution, we assembled the ∼26 Mb genome of a siphonous green alga, Caulerpa lentillifera, with high contiguity, containing 9,311 protein-coding genes. Molecular phylogeny using 107 nuclear genes indicates that the diversification of the class Ulvophyceae, including C. lentillifera, occurred before the split of the Chlorophyceae and Trebouxiophyceae. Compared with other green algae, the TALE superclass of homeobox genes, which expanded in land plants, shows a series of lineage-specific duplications in this siphonous macroalga. Plant hormone signalling components were also expanded in a lineage-specific manner. Expanded transport regulators, which show spatially different expression, suggest that the structural patterning strategy of a multinucleate cell depends on diversification of nuclear pore proteins. These results not only imply functional convergence of duplicated genes among green plants, but also provide insight into evolutionary roots of green plants. Based on the present results, we propose cellular and molecular mechanisms involved in the structural differentiation in the siphonous alga.
Collapse
Affiliation(s)
- Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yoshimi Higa
- Onna Village Fisheries Cooperative, Onna, Okinawa, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
9
|
He Y, Wang Y, Hu C, Sun X, Li Y, Xu N. Dynamic metabolic profiles of the marine macroalga Ulva prolifera during fragmentation-induced proliferation. PLoS One 2019; 14:e0214491. [PMID: 31091237 PMCID: PMC6519826 DOI: 10.1371/journal.pone.0214491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/01/2019] [Indexed: 12/02/2022] Open
Abstract
Ulva prolifera, a type of marine macroalgae, is the causative species behind green tides mainly in the Yellow Sea and adjacent regions. Nevertheless, it can be used as food or animal feed in South China. The vegetative fragments of U. prolifera are an important seed source for successive green tide blooms. Fragmentation shortens the transition time from the vegetative state to the reproductive state. However, the translation of the algal metabolites during gametogenesis is far from well understood. In this study, the dynamic metabolic profiles of U. prolifera thallus during fragmentation-induced proliferation were investigated using non-targeted metabolomics approach via a series of time course experiments in June 2017. After a 30 min low temperature shock, fragmentation induced a reproductive response of 91.57% of U. prolifera in 48 h, whereas the value was only 21.43% in the control group. A total of 156 chromatographic peaks were detected, and 63 metabolites were significantly changed in U. prolifera during reproduction. Aanlysis of the kinetic metabolic pattern showed that the fragments not only induced the formation of sporangia, but also led to complex metabolite accumulation. During fragmentation-induced proliferation, U. prolifera consumed different sugars at different time points. γ-Aminobutyric acid (GABA), glutamic acid, gallic acid, and malic acid may play important roles in germ cell formation and in the release of U. prolifera, whereas n-hexanol, 2-methyl-3-phenylindole, and 3-indoleacetonitrile may be beneficial for biotic stress resistance. Compared with the control group, in the treatment group, metabolites such as alcohols and organic acids also showed significant difference with the photoperiod at the initial stage of proliferation (before 60 h). In conclusion, changes in the levels of metabolites, including sugars, organic acids, and alcohol with photoperiod may be the strategy adopted by U. prolifera to cope with fragmentation in nature.
Collapse
Affiliation(s)
- Yanli He
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Science, Ningbo University, Ningbo, Zhejiang, P.R. China
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, P.R. China
| | - Yanhui Wang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, P.R. China
| | - Chaoyang Hu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Science, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Xue Sun
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Science, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Science, Ningbo University, Ningbo, Zhejiang, P.R. China
| | - Nianjun Xu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Science, Ningbo University, Ningbo, Zhejiang, P.R. China
- * E-mail:
| |
Collapse
|
10
|
In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging. Anal Bioanal Chem 2017; 409:4893-4903. [PMID: 28600691 DOI: 10.1007/s00216-017-0430-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to discriminate between cell differentiation processes in macroalgae. One of the key developmental processes in the algal life cycle is the production of germ cells (gametes and zoids). The gametogenesis of the marine green macroalga Ulva mutabilis (Chlorophyta) was monitored by metabolomic snapshots of the surface, when blade cells differentiate synchronously into gametangia and giving rise to gametes. To establish MSI for macroalgae, dimethylsulfoniopropionate (DMSP), a known algal osmolyte, was determined. MSI of the surface of U. mutabilis followed by chemometric data analysis revealed dynamic metabolomic changes during cell differentiation. DMSP and a total of 55 specific molecular biomarkers, which could be assigned to important stages of the gametogenesis, were detected. Our research contributes to the understanding of molecular mechanisms underlying macroalgal cell differentiation. Graphical abstract Molecular changes during cell differentiation of the marine macroalga Ulva were visualized by matrix assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI).
Collapse
|
11
|
Wichard T. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). FRONTIERS IN PLANT SCIENCE 2015; 6:86. [PMID: 25784916 PMCID: PMC4347444 DOI: 10.3389/fpls.2015.00086] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/02/2015] [Indexed: 05/23/2023]
Abstract
Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere.
Collapse
Affiliation(s)
- Thomas Wichard
- *Correspondence: Thomas Wichard, Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Lessingstr. 8, Jena 07743, Germany e-mail:
| |
Collapse
|
12
|
Wichard T, Charrier B, Mineur F, Bothwell JH, Clerck OD, Coates JC. The green seaweed Ulva: a model system to study morphogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:72. [PMID: 25745427 PMCID: PMC4333771 DOI: 10.3389/fpls.2015.00072] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 05/23/2023]
Abstract
Green macroalgae, mostly represented by the Ulvophyceae, the main multicellular branch of the Chlorophyceae, constitute important primary producers of marine and brackish coastal ecosystems. Ulva or sea lettuce species are some of the most abundant representatives, being ubiquitous in coastal benthic communities around the world. Nonetheless the genus also remains largely understudied. This review highlights Ulva as an exciting novel model organism for studies of algal growth, development and morphogenesis as well as mutualistic interactions. The key reasons that Ulva is potentially such a good model system are: (i) patterns of Ulva development can drive ecologically important events, such as the increasing number of green tides observed worldwide as a result of eutrophication of coastal waters, (ii) Ulva growth is symbiotic, with proper development requiring close association with bacterial epiphytes, (iii) Ulva is extremely developmentally plastic, which can shed light on the transition from simple to complex multicellularity and (iv) Ulva will provide additional information about the evolution of the green lineage.
Collapse
Affiliation(s)
- Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Bénédicte Charrier
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Roscoff, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC University of Paris 06, Roscoff, France
| | - Frédéric Mineur
- School of Biological Sciences, Queen’s University of Belfast, Belfast, UK
| | - John H. Bothwell
- School of Biological and Biomedical Sciences and Durham Energy Institute, Durham University, Durham, UK
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | |
Collapse
|