1
|
Pastor-López EJ, Escolà M, Kisielius V, Arias CA, Carvalho PN, Gorito AM, Ramos S, Freitas V, Guimarães L, Almeida CMR, Müller JA, Küster E, Kilian RM, Diawara A, Ba S, Matamoros V. Potential of nature-based solutions to reduce antibiotics, antimicrobial resistance, and pathogens in aquatic ecosystems. a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174273. [PMID: 38925380 DOI: 10.1016/j.scitotenv.2024.174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This comprehensive scientific review evaluates the effectiveness of nature-based solutions (NBS) in reducing antibiotics (ABs), combating antimicrobial resistance (AMR), and controlling pathogens in various aquatic environments at different river catchment levels. It covers conventional and innovative treatment wetland configurations for wastewater treatment to reduce pollutant discharge into the aquatic ecosystems as well as exploring how river restoration and saltmarshes can enhance pollutant removal. Through the analysis of experimental studies and case examples, the review shows NBS's potential for providing sustainable and cost-effective solutions to improve the health of aquatic ecosystems. It also evaluates the use of diagnostic indicators to predict NBS effectiveness in removing specific pollutants such as ABs and AMR. The review concludes that NBS are feasible for addressing the new challenges stemming from human activities such as the presence of ABs, AMR and pathogens, contributing to a better understanding of NBS, highlighting success stories, addressing knowledge gaps, and providing recommendations for future research and implementation.
Collapse
Affiliation(s)
- Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Mònica Escolà
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Carlos A Arias
- Department of Biology, Aarhus University, Aarhus, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; WATEC - Centre for Water Technology, Aarhus University, Aarhus, Denmark
| | - Ana M Gorito
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Sandra Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vânia Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Dept. Bioanalytical Ecotoxicology, Leipzig, Germany
| | - R M Kilian
- Kilian Water Ltd., Torupvej 4, 8654 Bryrup, Denmark
| | - Abdoulaye Diawara
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Sidy Ba
- Department of Geology and Mines, École Nationale d'Ingénieurs - Abderhamane Baba Touré (ENI-ABT), Bamako, Mali
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
2
|
Jalloh AA, Mutyambai DM, Yusuf AA, Subramanian S, Khamis F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci Rep 2024; 14:14355. [PMID: 38906908 PMCID: PMC11192945 DOI: 10.1038/s41598-024-64138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.
Collapse
Affiliation(s)
- Abdul A Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 , Hatfield, Pretoria, South Africa
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya.
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 , Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag x20, Hatfield, Pretoria, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
3
|
Petrosyan K, Thijs S, Piwowarczyk R, Ruraż K, Kaca W, Vangronsveld J. Diversity and potential plant growth promoting capacity of seed endophytic bacteria of the holoparasite Cistanche phelypaea (Orobanchaceae). Sci Rep 2023; 13:11835. [PMID: 37481658 PMCID: PMC10363106 DOI: 10.1038/s41598-023-38899-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
Salt marshes are highly dynamic, biologically diverse ecosystems with a broad range of ecological functions. We investigated the endophytic bacterial community of surface sterilized seeds of the holoparasitic Cistanche phelypaea growing in coastal salt marshes of the Iberian Peninsula in Portugal. C. phelypaea is the only representative of the genus Cistanche that was reported in such habitat. Using high-throughput sequencing methods, 23 bacterial phyla and 263 different OTUs on genus level were found. Bacterial strains belonging to phyla Proteobacteria and Actinobacteriota were dominating. Also some newly classified or undiscovered bacterial phyla, unclassified and unexplored taxonomic groups, symbiotic Archaea groups inhabited the C. phelypaea seeds. γ-Proteobacteria was the most diverse phylogenetic group. Sixty-three bacterial strains belonging to Bacilli, Actinomycetes, α-, γ- and β-Proteobacteria and unclassified bacteria were isolated. We also investigated the in vitro PGP traits and salt tolerance of the isolates. Among the Actinobacteria, Micromonospora spp. showed the most promising endophytes in the seeds. Taken together, the results indicated that the seeds were inhabited by halotolerant bacterial strains that may play a role in mitigating the adverse effects of salt stress on the host plant. In future research, these bacteria should be assessed as potential sources of novel and unique bioactive compounds or as novel bacterial species.
Collapse
Affiliation(s)
- Kristine Petrosyan
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Sofie Thijs
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Renata Piwowarczyk
- Department of Environmental Biology, Center for Research and Conservation of Biodiversity, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Karolina Ruraż
- Department of Environmental Biology, Center for Research and Conservation of Biodiversity, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Wiesław Kaca
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Jaco Vangronsveld
- Environmental Biology Research Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka, 19, 20-033, Lublin, Poland
| |
Collapse
|
4
|
Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Micropollutants in bodies of water represent many challenges. We addressed these challenges by the application of constructed wetlands, which represent advanced treatment technology for the removal of micropollutants from water. However, which mechanisms specifically contribute to the removal efficiency often remains unclear. Methods: Here, we focus on the removal of 27 micropollutants by bioremediation. For this, macrophytes Phragmites australis, Iris pseudacorus and Lythrum salicaria were taken from established wetlands, and a special experimental set-up was designed. In order to better understand the impact of the rhizosphere microbiome, we determined the microbial composition using 16S rRNA gene sequencing and investigated the role of identified genera in the micropollutant removal of micropollutants. Moreover, we studied the colonization of macrophyte roots by arbuscular mycorrhizal fungi, which are known for their symbiotic relationship with plants. This symbiosis could result in increased removal of present micropollutants. Results: We found Iris pseudacorus to be the most successful bioremediative system, as it removed 22 compounds, including persistent ones, with more than 80% efficiency. The most abundant genera that contributed to the removal of micropollutants were Pseudomonas, Flavobacterium, Variovorax, Methylotenera, Reyranella, Amaricoccus and Hydrogenophaga. Iris pseudacorus exhibited the highest colonization rate (56%). Conclusions: Our experiments demonstrate the positive impact of rhizosphere microorganisms on the removal of micropollutants.
Collapse
|
5
|
Ren Y, Cui GD, He LS, Yao H, Zi CY, Gao YX. Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Rhizoma phragmitis: A Narrative Review. Chin J Integr Med 2022; 28:1127-1136. [PMID: 35319074 PMCID: PMC8940586 DOI: 10.1007/s11655-022-3572-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Rhizoma phragmitis is a common Chinese herbal medicine whose effects are defined as ‘clearing heat and fire, promoting fluid production to quench thirst, eliminating irritability, stopping vomiting, and disinhibiting urine’. During the Novel Coronavirus epidemic in 2020, the Weijing Decoction and Wuye Lugen Decoction, with Rhizoma phragmitis as the main herbal component, were included in The Pneumonia Treatment Protocol for Novel Coronavirus Infection (Trial Version 5) due to remarkable antiviral effects. Modern pharmacological studies have shown that Rhizoma phragmitis has antiviral, antioxidative, anti-inflammatory, analgesic, and hypoglycemic functions, lowers blood lipids and protects the liver and kidney. This review aims to provide a systematic summary of the botany, traditional applications, phytochemistry, pharmacology and toxicology of Rhizoma phragmitis.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ge-Dan Cui
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li-Sha He
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Huan Yao
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chang-Yan Zi
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yong-Xiang Gao
- International Education College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
6
|
Mierzejewska E, Urbaniak M, Zagibajło K, Vangronsveld J, Thijs S. The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on Soil, Rhizosphere, and Plant Endosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2022; 13:882228. [PMID: 35712561 PMCID: PMC9195007 DOI: 10.3389/fpls.2022.882228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 05/07/2023]
Abstract
The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Elżbieta Mierzejewska,
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Zagibajło
- Food Safety Laboratory, Research Institute of Horticulture, Skierniewice, Poland
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
7
|
Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int J Mol Sci 2021; 22:ijms22179557. [PMID: 34502466 PMCID: PMC8431480 DOI: 10.3390/ijms22179557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.
Collapse
|
8
|
Untargeted Metabolomics Studies on Drug-Incubated Phragmites australis Profiles. Metabolites 2020; 11:metabo11010002. [PMID: 33375173 PMCID: PMC7822174 DOI: 10.3390/metabo11010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Plants produce a huge number of functionally and chemically different natural products that play an important role in linking the plant with the adjacent environment. Plants can also absorb and transform external organic compounds (xenobiotics). Currently there are only a few studies concerning the effects of xenobiotics and their transformation products on plant metabolites using a mass spectrometric untargeted screening strategy. This study was designed to investigate the changes of the Phragmites australis metabolome following/after diclofenac or carbamazepine incubation, using a serial coupling of reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) combined with accurate high-resolution time-of-flight mass spectrometer (TOF-MS). An untargeted screening strategy of metabolic fingerprints was developed to purposefully compare samples from differently treated P. australis plants, revealing that P. australis responded to each drug differently. When solvents with significantly different polarities were used, the metabolic profiles of P. australis were found to change significantly. For instance, the production of polyphenols (such as quercetin) in the plant increased after diclofenac incubation. Moreover, the pathway of unsaturated organic acids became more prominent, eventually as a reaction to protect the cells against reactive oxygen species (ROS). Hence, P. australis exhibited an adaptive mechanism to cope with each drug. Consequently, the untargeted screening approach is essential for understanding the complex response of plants to xenobiotics.
Collapse
|
9
|
Wang YF, Qiao M, Zhu D, Zhu YG. Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10754-10762. [PMID: 32816468 DOI: 10.1021/acs.est.0c03075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effects of pharmaceuticals as emerging contaminants in soil on the gut microbiome and antibiotic resistome in nontarget soil fauna are largely elusive. In this study, we explored the composition of the bacterial community and the presence of antibiotic resistance genes (ARGs) in the gut of the model soil collembolan (Folsomia candida) upon antiepileptic drug carbamazepine (CBZ) and antibiotic tetracycline (TC) exposure. Results showed that, individually or in combination, exposure to TC or CBZ significantly altered the gut community structure of F. candida, causing some enrichment of the bacteria associated with xenobiotic metabolism, such as Arthrobacter, Achromobacter, Gordonia, and Shinella. More importantly, oral exposure to the nonantibiotic drug CBZ enhanced the abundance and diversity of ARGs in the gut of F. candida, especially for the beta-lactams and multidrug resistance genes. Our results revealed that the most likely hosts of ARGs in the gut of F. candida were Proteobacteria and Actinobacteria. The significant positive correlation between mobile genetic elements (MGEs) and ARGs indicated the potential risk of ARGs transmission in the gut of F. candida. Overall, the nonantibiotic CBZ is likely to disturb the gut microbiota of nontarget soil fauna such as collembolans, thereby enhancing the dissemination of ARGs.
Collapse
Affiliation(s)
- Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| |
Collapse
|
10
|
Metagenomic profiling of the community structure, diversity, and nutrient pathways of bacterial endophytes in maize plant. Antonie van Leeuwenhoek 2020; 113:1559-1571. [PMID: 32803452 DOI: 10.1007/s10482-020-01463-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023]
Abstract
This study investigated the diversity, structure and nutrient pathways of the root-associated bacterial endophytes of maize plant cultivated using different fertilizers to verify the claim that inorganic fertilizers have some toxic effects on plant microbiome and not are ecofriendly. Whole DNA was extracted from the roots of maize plants cultivated with organic fertilizer, inorganic fertilizer and maize planted without any fertilizer at different planting sites in an experimental field and sequenced using shotgun metagenomics. Our results using the Subsystem database revealed a total of 28 phyla and different nutrient pathways in all the samples. The major phyla observed were Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, Tenericutes, Planctomycetes, Cyanobacteria, and Chlorobi. Bacteroidetes dominated maize from organic fertilizer sites, Firmicutes dominated the no fertilizers site while Proteobacteria dominated Inorganic fertilizer. The diversity analysis showed that the abundance of endophytic bacteria in all the sites is in the order organic fertilizer (FK) > no fertilizer (CK) > inorganic fertilizer (NK). Furthermore, the major nutrient cycling pathways identified are linked with nitrogen and phosphorus metabolism which were higher in FK samples. Going by the results obtained, this study suggests that organic fertilizer could be a boost to sustainable agricultural practices and should be encouraged. Also, a lot of novel endophytic bacteria groups were identified in maize. Mapping out strategies to isolate and purify this novel endophytic bacteria could help in promoting sustainable agriculture alongside biotechnological applications in future.
Collapse
|
11
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
12
|
Reyes-Hernández SJ, Zamora-Briseño JA, Cerqueda-García D, Castaño E, Rodríguez-Zapata LC. Alterations in the sap-associated microbiota of Carica papaya in response to drought stress. Symbiosis 2020. [DOI: 10.1007/s13199-020-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Sauvêtre A, Węgrzyn A, Yang L, Vestergaard G, Miksch K, Schröder P, Radl V. Enrichment of endophytic Actinobacteria in roots and rhizomes of Miscanthus × giganteus plants exposed to diclofenac and sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11892-11904. [PMID: 31981026 DOI: 10.1007/s11356-020-07609-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
This study investigates how wastewater containing 2 mg l-1 of sulfamethoxazole (SMX) and 2 mg l-1 of diclofenac (DCF) affects the composition of bacterial communities present in the roots and rhizomes of Miscanthus × giganteus plants grown in laboratory-scale constructed wetlands. Bacterial communities in plant roots and rhizomes were identified in treated and control samples by 16S rRNA amplicon sequencing. Moreover, bacterial endophytes were isolated in R2A and 1/10 869 media and screened for their ability to metabolize SMX and DCF in liquid medium by HPLC. Our results show significant changes in the abundance of main genera, namely Sphingobium and Streptomyces between control and treated plants. Around 70% of the strains isolated from exposed plants belonged to the phylum Actinobacteria and were classified as Streptomyces, Microbacterium, and Glycomyces. In non-exposed plants, Proteobacteria represented 43.5% to 63.6% of the total. We identified 17 strains able to remove SMX and DCF in vitro. From those, 76% were isolated from exposed plants. Classified mainly as Streptomyces, they showed the highest SMX (33%) and DCF (41%) removal efficiency. These isolates, alone or in combination, might be used as bio-inoculants in constructed wetlands to enhance the phytoremediation of SMX and DCF during wastewater treatment.
Collapse
Affiliation(s)
- Andrés Sauvêtre
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- HydroSciences Montpellier, UMR 5569, Faculté de Pharmacie, University of Montpellier, Avenue Charles Flahault 15, 34000, Montpellier, France.
| | - Anna Węgrzyn
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland., Konarskiego 18, 44-100, Gliwice, Poland
| | - Luhua Yang
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Institute for Microbiology, University of Copenhagen; Microbiology, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Korneliusz Miksch
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland., Konarskiego 18, 44-100, Gliwice, Poland
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Viviane Radl
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
14
|
|
15
|
Bigott Y, Khalaf DM, Schröder P, Schröder PM, Cruzeiro C. Uptake and Translocation of Pharmaceuticals in Plants: Principles and Data Analysis. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Riva V, Mapelli F, Syranidou E, Crotti E, Choukrallah R, Kalogerakis N, Borin S. Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration. Microorganisms 2019; 7:E384. [PMID: 31554215 PMCID: PMC6843347 DOI: 10.3390/microorganisms7100384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls.
Collapse
Affiliation(s)
- Valentina Riva
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Evdokia Syranidou
- School of Environmental Engineering, Technical University of Crete, Polytecneioupolis, 73100 Chania, Greece.
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Redouane Choukrallah
- Hassan II, Salinity and Plant Nutrition Laboratory, Institut Agronomique et Vétérinaire, 86150 Agadir, Morocco.
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, Polytecneioupolis, 73100 Chania, Greece.
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
17
|
Saccà ML, Ferrero VEV, Loos R, Di Lenola M, Tavazzi S, Grenni P, Ademollo N, Patrolecco L, Huggett J, Caracciolo AB, Lettieri T. Chemical mixtures and fluorescence in situ hybridization analysis of natural microbial community in the Tiber river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:7-19. [PMID: 30981201 PMCID: PMC6509555 DOI: 10.1016/j.scitotenv.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The Water Framework Directive (WFD) regulates freshwater and coastal water quality assessment in Europe. Chemical and ecological water quality status is based on measurements of chemical pollutants in water and biota together with other indicators such as temperature, nutrients, species compositions (phytoplankton, microalgae, benthos and fish) and hydromorphological conditions. However, in the current strategy a link between the chemical and the ecological status is missing. In the present WFD, no microbiological indicators are foreseen for integrating the different anthropogenic pressures, including mixtures of chemicals, nutrients and temperature changes, to provide a holistic view of the freshwater ecosystem water quality. The main aim of this work was to evaluate if natural microbial populations can be valuable indicators of multiple stressors (e.g. chemical pollutants, temperature, nutrients etc.) to guide preventive and remediation actions by water authorities. A preliminary survey was conducted to identify four sites reflecting a contamination gradient from the source to the mouth of a river suitable to the objectives of the European Marie Curie project, MicroCoKit. The River Tiber (Italy) was selected as a pilot case study to investigate the correlation between bacteria taxa and the chemical status of the river. The main physicochemical parameters, inorganic elements, organic pollutants and natural microbial community composition were assessed at four selected sites corresponding to pristine, agricultural, industrial and urban areas for three consecutive years. The overall chemical results indicated a correspondence between different groups of contaminants and the main contamination sources at the selected sampling points. Phylogenetic analysis of the microbial community analyzed by Fluorescence In Situ Hybridization method (FISH) revealed differences among the four sampling sites which could reflect an adaptive bacterial response to the different anthropogenic pressures.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | | | - Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Martina Di Lenola
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Simona Tavazzi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Paola Grenni
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Nicoletta Ademollo
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Luisa Patrolecco
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Jim Huggett
- Molecular and Cell Biology team, LGC, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom; School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Anna Barra Caracciolo
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
18
|
Nguyen PM, Afzal M, Ullah I, Shahid N, Baqar M, Arslan M. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21109-21126. [PMID: 31134537 DOI: 10.1007/s11356-019-05320-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Post-industrial era has witnessed significant advancements at unprecedented rates in the field of medicine and cosmetics, which has led to affluent use of pharmaceuticals and personal care products (PPCPs). However, this has exacerbated the influx of various pollutants in the environment affecting living organisms through multiple routes. Thousands of PPCPs of various classes-prescription and non-prescription drugs-are discharged directly into the environment. In this review, we have surveyed literature investigating plant-based remediation practices to remove PPCPs from the environment. Our specific aim is to highlight the importance of plant-bacteria interplay for sustainable remediation of PPCPs. The green technologies not only are successfully curbing organic pollutants but also have displayed certain limitations. For example, the presence of biologically active compounds within plant rhizosphere may affect plant growth and hence compromise the phytoremediation potential of constructed wetlands. To overcome these hindrances, combined use of plants and beneficial bacteria has been employed. The microbes (both rhizo- and endophytes) in this type of system not only degrade PPCPs directly but also accelerate plant growth by producing growth-promoting enzymes and hence remediation potential of constructed wetlands.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Environmental Technology, Faculty of Environmental Sciences, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Inaam Ullah
- International Join laboratory for Global Climate Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Naeem Shahid
- Department System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, 04318, Germany
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Arslan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan.
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
19
|
Węgrzyn A, Felis E. Isolation of Bacterial Endophytes from Phalaris arundinacea and their Potential in Diclofenac and Sulfamethoxazole Degradation. Pol J Microbiol 2019; 67:321-331. [PMID: 30451449 PMCID: PMC7256827 DOI: 10.21307/pjm-2018-039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
Diclofenac (DCF), a non-steroidal anti-inflammatory drug (NSAID) and sulfamethoxazole (SMX), an antimicrobial agent, are in common use and can be often detected in the environment. The constructed wetland systems (CWs) are one of the technologies to remove them from the aquatic environment. The final effect of the treatment processes depends on many factors, including the interaction between plants and the plant-associated microorganisms present in the system. Bacteria living inside the plant as endophytes are exposed to secondary metabolites in the tissues. Therefore, they can possess the potential to degrade aromatic structures, including residues of pharmaceuticals. The endophytic strain MG7 identified as Microbacterium sp., obtained from root tissues of Phalaris arundinacea exposed to DCF and SMX was tested for the ability to remove 2 mg/l of SMX and DCF in monosubstrate cultures and in the presence of phenol as an additional carbon source. The MG7 strain was able to remove approximately 15% of DCF and 9% of SMX after 20 days of monosubstrate culture. However, a decrease in the optical density of the MG7 strain cultures was observed, caused by an insufficient carbon source for bacterial growth and proliferation. The adsorption of pharmaceuticals onto autoclaved cells was negligible, which confirmed that the tested strain was directly involved in the removal of DCF and SMX. In the presence of phenol as the additional carbon source, the MG7 strain was able to remove approximately 35% of DCF and 61% of SMX, while an increase in the optical density of the cultures was noted. The higher removal efficiency can be explained by adaptive mechanisms in microorganisms exposed to phenol (i.e. changes in the composition of membrane lipids) and by a co-metabolic mechanism, where non-growth substrates can be transformed by non-specific enzymes. The presence of both DCF and SMX and the influence of the supply frequency of CWs with the contaminated wastewater on the diversity of whole endophytic bacterial communities were demonstrated. The results of this study suggest the capability of the MG7 strain to degrade DCF and SMX. This finding deserves further investigations to improve wastewater treatment in CWs with the possible use of pharmaceuticals-degrading endophytes.
Collapse
Affiliation(s)
- Anna Węgrzyn
- Environmental Biotechnology Department, Faculty o f Power and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty o f Power and Environmental Engineering, Silesian University of Technology, Gliwice, Poland ; Centre for Biotechnology, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
20
|
Dissipation of Micropollutants in a Rewetted Fen Peatland: A Field Study Using Treated Wastewater. WATER 2017. [DOI: 10.3390/w9060449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Soares MA, Li HY, Kowalski KP, Bergen M, Torres MS, White JF. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth. MICROBIAL ECOLOGY 2016; 72:407-417. [PMID: 27260154 DOI: 10.1007/s00248-016-0793-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
We hypothesize that bacterial endophytes may enhance the competitiveness and invasiveness of Phragmites australis. To evaluate this hypothesis, endophytic bacteria were isolated from P. australis. The majority of the shoot meristem isolates represent species from phyla Firmicutes, Proteobacteria, and Actinobacteria. We chose one species from each phylum to characterize further and to conduct growth promotion experiments in Phragmites. Bacteria tested include Bacillus amyloliquefaciens A9a, Achromobacter spanius B1, and Microbacterium oxydans B2. Isolates were characterized for known growth promotional traits, including indole acetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis activity. Potentially defensive antimicrobial lipopeptides were assayed for through application of co-culturing experiments and mass spectrometer analysis. B. amyloliquefaciens A9a and M. oxydans B2 produced IAA. B. amyloliquefaciens A9a secreted antifungal lipopeptides. Capability to promote growth of P. australis under low nitrogen conditions was evaluated in greenhouse experiments. All three isolates were found to increase the growth of P. australis under low soil nitrogen conditions and showed increased absorption of isotopic nitrogen into plants. This suggests that the Phragmites microbes we evaluated most likely promote growth of Phragmites by enhanced scavenging of nitrogenous compounds from the rhizosphere and transfer to host roots. Collectively, our results support the hypothesis that endophytic bacteria play a role in enhancing growth of P. australis in natural populations. Gaining a better understanding of the precise contributions and mechanisms of endophytes in enabling P. australis to develop high densities rapidly could lead to new symbiosis-based strategies for management and control of the host.
Collapse
Affiliation(s)
- M A Soares
- Department of Botany and Ecology, Federal University of Mato Grosso, Cuiabá, Mato Grosso, 78060-900, Brazil.
| | - H-Y Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - K P Kowalski
- US Geological Survey, Great Lakes Science Center, Ann Arbor, MI, USA
| | - M Bergen
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - M S Torres
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - J F White
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| |
Collapse
|
22
|
Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula). PLoS One 2016; 11:e0159007. [PMID: 27391592 PMCID: PMC4938511 DOI: 10.1371/journal.pone.0159007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/24/2016] [Indexed: 12/02/2022] Open
Abstract
In addition to being a forage crop, Caliph medic (Medicago truncatula) is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA) using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05) altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is consistent with the predicted occurrence (based on cultivation-independent techniques) of these bacteria and provides some insight into the importance of the endophytic bacteria in Caliph medic when grown under normal and saline conditions.
Collapse
Affiliation(s)
- Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| | - Abbas Al-Lawati
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Gerry Aplang Jana
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
23
|
Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1160-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Ryšlavá H, Pomeislová A, Pšondrová Š, Hýsková V, Smrček S. Phytoremediation of carbamazepine and its metabolite 10,11-epoxycarbamazepine by C3 and C4 plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20271-20282. [PMID: 26310701 DOI: 10.1007/s11356-015-5190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
The anticonvulsant drug carbamazepine is considered as an indicator of sewage water pollution: however, its uptake by plants and effect on metabolism have not been sufficiently documented, let alone its metabolite (10,11-epoxycarbamazepine). In a model system of sterile, hydroponically cultivated Zea mays (as C4 plant) and Helianthus annuus (as C3 plant), the uptake and effect of carbamazepine and 10,11-epoxycarbamazepine were studied in comparison with those of acetaminophen and ibuprofen. Ibuprofen and acetaminophen were effectively extracted from drug-supplemented media by both plants, while the uptake of more hydrophobic carbamazepine was much lower. On the other hand, the carbamazepine metabolite, 10,11-epoxycarbamazepine, was, unlike sunflower, willingly taken up by maize plants (after 96 h 88 % of the initial concentration) and effectively stored in maize tissues. In addition, the effect of the studied pharmaceuticals on the plant metabolism (enzymes of Hatch-Slack cycle, peroxidases) was followed. The activity of bound peroxidases, which could cause xylem vessel lignification and reduction of xenobiotic uptake, was at the level of control plants in maize leaves contrary to sunflower. Therefore, our results indicate that maize has the potential to remove 10,11-epoxycarbamazepine from contaminated soils.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic.
| | - Alice Pomeislová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Šárka Pšondrová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Stanislav Smrček
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| |
Collapse
|
25
|
Furini A, Manara A, DalCorso G. Editorial: Environmental phytoremediation: plants and microorganisms at work. FRONTIERS IN PLANT SCIENCE 2015; 6:520. [PMID: 26217369 PMCID: PMC4493365 DOI: 10.3389/fpls.2015.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
|