1
|
Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. Rice Mitogen-Activated Protein Kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108078. [PMID: 37832368 DOI: 10.1016/j.plaphy.2023.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Chandana Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
2
|
Wu J, Lv S, Zhao L, Gao T, Yu C, Hu J, Ma F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. PLANTA 2023; 257:108. [PMID: 37133783 DOI: 10.1007/s00425-023-04136-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chang Yu
- Kerchin District Branch Office, Tongliao City Ecological Environment Bureau, Tongliao, 028006, China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian, 116032, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Joompang A, Anwised P, Luangpraditkun K, Jangpromma N, Viyoch J, Viennet C, Klaynongsruang S. Anti-Melanogenesis Activity of Crocodile ( Crocodylus siamensis) White Blood Cell Extract on Ultraviolet B-Irradiated Melanocytes. J Med Food 2022; 25:818-827. [PMID: 35914025 DOI: 10.1089/jmf.2021.k.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet (UV) radiation generates a range of biological effects in the skin, which includes premature skin aging, hyperpigmentation, and cancer. Therefore, the development of new effective agents for UV-related skin damage remains a challenge in the pharmaceutical industry. This study aims to test the inhibitory effect of crocodile white blood cell (cWBC) extract, a rich source of bioactive peptides, on ultraviolet B (UVB)-induced melanocyte pigmentation. The results showed that cWBC (6.25-400 μg/mL) could inhibit tyrosinase without adduct formation by 12.97 ± 4.20% on average. cWBC pretreatment (25-100 μg/mL) had no cytotoxicity and reduced intracellular melanin to 111.17 ± 5.20% compared with 124.87 ± 7.43 for UVB condition. The protective role of cWBC pretreatment against UVB was exhibited by the promotion of cell proliferation and the prevention of UVB-induced morphological change as observed from F actin staining. The decrease of microphthalmia-associated transcription factor expression levels after cWBC pretreatment might be a mechanism by which cWBC suppresses UVB-induced pigmentation. These results suggest that cWBC could be beneficial for the prevention of UVB-induced skin pigmentation.
Collapse
Affiliation(s)
- Anupong Joompang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.,Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Preeyanan Anwised
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kunlathida Luangpraditkun
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.,Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Céline Viennet
- UMR 1098 RIGHT INSERM EFS BFC, DImaCell Imaging Ressource Center, University of Bourgogne Franche-Comté, Besançon, France
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand.,Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Petpiroon N, Rosena A, Pimtong W, Charoenlappanit S, Koobkokkruad T, Roytrakul S, Aueviriyavit S. Protective effects of Thai silk sericins and their related mechanisms on UVA-induced phototoxicity and melanogenesis: Investigation in primary melanocyte cells using a proteomic approach. Int J Biol Macromol 2021; 201:75-84. [PMID: 34968545 DOI: 10.1016/j.ijbiomac.2021.12.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022]
Abstract
UV radiation causes excess production of melanin as a result of hyperpigmentation and skin disorders. Silk sericin exhibited bioactivities to skin and inhibited UV-induced phototoxicity and melanogenesis in skin cells; however, the mechanism related to sericin against UV-induced melanogenesis has not been investigated. This study aimed to investigate the protective effects of Thai silk sericins against UVA-induced phototoxicity and melanogenesis and their related mechanisms. Thai silk sericins exhibited cytoprotective effects against UV-induced toxicity in human primary melanocytes by attenuation of cytotoxicity, intracellular ROS generation, and mitochondrial potential impairment. Pre- and post-treatment with sericin significantly inhibited melanin synthesis and tyrosinase activity against UVA exposure. In addition, sericin S2 could reduce the basal melanin content in zebrafish embryos. The proteomic analysis demonstrated that Thai silk sericins altered the protein expression in melanocytes especially proteins related to stress, inflammatory, cytokine stimulation, cell proliferation, and cell survival processes that contribute to cytoprotective effect and inhibitory effect on melanogenesis of sericin. Moreover, we demonstrated the novel mechanism of Thai silk sericins in inhibiting UVA-induced melanogenesis via increasing BMP4 expression in MAPK/ERK signaling pathway. These evidences support the potential use of Thai silk sericins in prevention of hyperpigmentation in skin disorders especially after UVA exposure.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Apiwan Rosena
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sawanya Charoenlappanit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thongchai Koobkokkruad
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
5
|
Lee JH, Shibata S, Goto E. Time-Course of Changes in Photosynthesis and Secondary Metabolites in Canola ( Brassica napus) Under Different UV-B Irradiation Levels in a Plant Factory With Artificial Light. FRONTIERS IN PLANT SCIENCE 2021; 12:786555. [PMID: 35003173 PMCID: PMC8730333 DOI: 10.3389/fpls.2021.786555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate short-duration (24 h) UV-B irradiation as a preharvest abiotic stressor in canola plants. Moreover, we quantified the expression levels of genes related to bioactive compounds synthesis in response to UV-B radiation. Canola seedlings were cultivated in a plant factory under artificial light (200 μmol m-2 s-1 photosynthetic photon flux density; white LED lamps; 16 h on/8 h off), 25°C/20°C daytime/nighttime air temperature, and 70% relative humidity. Eighteen days after sowing, the seedlings were subjected to supplemental UV-B treatment. The control plants received no UV-B irradiation. The plants were exposed to 3, 5, or 7 W m-2 UV-B irradiation. There were no significant differences in shoot fresh weight between the UV-B-irradiated and control plants. With increasing UV-B irradiation intensity and exposure time, the H2O2 content gradually increased, the expression levels of genes related to photosynthesis downregulated, and phenylpropanoid and flavonoid production, and also total phenolic, flavonoid, antioxidant, and anthocyanin concentrations were significantly enhanced. The genes related to secondary metabolite biosynthesis were immediately upregulated after UV-B irradiation. The relative gene expression patterns identified using qRT-PCR corroborated the variations in gene expression that were revealed using microarray analysis. The time point at which the genes were induced varied with the gene location along the biosynthetic pathway. To the best of our knowledge, this is the first study to demonstrate a temporal difference between the accumulation of antioxidants and the induction of genes related to the synthesis of this compound in UV-B-treated canola plants. Our results demonstrated that short-term UV-B irradiation could augment antioxidant biosynthesis in canola without sacrificing crop yield or quality.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Seina Shibata
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Takahashi S, Kojo KH, Hasezawa S. Quantification of Ultraviolet-B Stress-Induced Changes in Nuclear and Cellular Sizes of Tobacco Bright Yellow-2 Cells. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Graduate School of Frontier Sciences, University of Tokyo
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies
| | - Kei H. Kojo
- Research and Development Division, LPIXEL Inc
| | | |
Collapse
|
7
|
Loukanov A, Mladenova P, Toshev S, Karailiev A, Ustinovich E, Nakabayashi S. Real time monitoring and quantification of uptake carbon nanodots in eukaryotic cells. Microsc Res Tech 2018; 81:1541-1547. [PMID: 30408265 DOI: 10.1002/jemt.23161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
Abstract
The real time monitoring and quantification of the concentration of highly fluorescent nitrogen-doped carbon nanodots (C-dots) in eukaryotic Tobacco bright yellow-2 (BY-2) plant cells was investigated by fluorescence and confocal microscopy. The quantitative measurement of their fluorescent emission intensity was possible because of the high photo-resistance, good water solubility and the absence of fading effect of the nanoparticles, which is frequent occurred problem of the conventional organic dyes. The microscopic analysis revealed that C-dots entered generally into the cells through endocytosis and caused negligible cytotoxicity. The multicolor cellular imaging of labeled Tobacco BY-2 demonstrates that the cells were in good health conditions and any blinking artifacts were not observed. The quantification of fluorescence emission intensity was carried out in the intracellular regions where the relationship between the C-dots concentration and relative emission was linear. Based on a control experiment with fluorescence liposomes with known dependence between C-dots concentration and emission, we were able to determine the amount of accumulated nanoparticles in the inner compartments of the eukaryotic cell through subsequent digital image analysis. The reported microscopic approach may be used for accurate testing and direct examination of the drug internalization mechanisms by C-dots as sensitive probes in single cells or tissues.
Collapse
Affiliation(s)
- Alexandre Loukanov
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| | - Polina Mladenova
- Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| | - Svetlin Toshev
- Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| | - Asen Karailiev
- Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| | - Elena Ustinovich
- Department of Economy, Management and Politics, Southwest State University (SWSU), Kursk, Russia
| | - Seiichiro Nakabayashi
- Laboratory of Engineering NanoBiotechnology, Department of Engineering Geoecology, University of Mining and Geology "St. Ivan Rilski", Sofia, Bulgaria
| |
Collapse
|
8
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
9
|
Issawi M, Muhieddine M, Girard C, Sol V, Riou C. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition. Glycoconj J 2017; 34:585-590. [PMID: 28676909 DOI: 10.1007/s10719-017-9782-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 01/06/2023]
Abstract
This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.
Collapse
Affiliation(s)
- Mohammad Issawi
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Mohammad Muhieddine
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Celine Girard
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Vincent Sol
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Catherine Riou
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France.
| |
Collapse
|